File size: 8,665 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
cd41f5f
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
9880f3d
db6a3b7
 
9880f3d
db6a3b7
bd46f72
cd41f5f
d7b1815
 
5dfa9c0
cd41f5f
 
 
e92b7dd
cd41f5f
 
 
 
b7b00e2
 
 
 
 
 
9880f3d
 
77db232
9880f3d
 
 
 
 
 
 
 
 
 
 
e92b7dd
 
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
9880f3d
cd41f5f
 
 
3057b36
cd41f5f
b7b00e2
cd41f5f
 
 
 
 
b7b00e2
cd41f5f
 
 
e92b7dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d475c1
15fe7bc
 
b7b00e2
7d475c1
b7b00e2
cd41f5f
9880f3d
db6a3b7
b7b00e2
cd41f5f
 
 
 
 
 
 
b7b00e2
690b53e
b7b00e2
db6a3b7
cd41f5f
db6a3b7
 
5dfa9c0
cd41f5f
7d475c1
793ef80
 
 
 
 
7d475c1
 
db6a3b7
 
b7b00e2
 
 
793ef80
bd46f72
 
 
 
 
690b53e
 
bd46f72
 
690b53e
 
b7b00e2
77db232
 
bd46f72
 
 
 
 
793ef80
c68d2cb
db6a3b7
 
793ef80
 
e92b7dd
2e78ab8
e92b7dd
5dfa9c0
cd41f5f
 
793ef80
b7b00e2
 
 
 
 
793ef80
db6a3b7
cd41f5f
 
 
 
db6a3b7
c68d2cb
2e78ab8
db6a3b7
793ef80
 
db6a3b7
793ef80
db6a3b7
793ef80
 
db6a3b7
793ef80
db6a3b7
 
2e78ab8
db6a3b7
 
cd41f5f
db6a3b7
 
793ef80
db6a3b7
cd41f5f
db6a3b7
 
 
5dfa9c0
db6a3b7
4ac6887
db6a3b7
c666caf
5dfa9c0
c666caf
 
e92b7dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

# Funciones auxiliares
def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)

def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)

def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images

def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }

def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    return gs, mesh

def get_seed(randomize_seed: bool, seed: int) -> int:
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

@spaces.GPU
def image_to_3d(
    multiimages: List[Tuple[Image.Image, str]],
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    req: gr.Request,
) -> Tuple[dict, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    outputs = pipeline.run_multi_image(
        [image[0] for image in multiimages],
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
        mode=multiimage_algo,
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path

@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path

# Interfaz Gradio
with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    # UTPL - Conversi贸n de Multiples Im谩genes a objetos 3D usando IA  
    ### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*  
    **Autor:** Carlos Vargas  
    **Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) (herramienta de c贸digo abierto para generaci贸n 3D)  
    **Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico  
    """)
    
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
                    multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)

            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
            
            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_glb_btn = gr.Button("Extract GLB", interactive=False)
        
        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB", exposure=10.0, height=300)
            download_glb = gr.DownloadButton(label="Download GLB", interactive=False)

    output_buf = gr.State()

    # Manejadores
    demo.load(start_session)
    demo.unload(end_session)
    
    multiimage_prompt.upload(
        preprocess_images,
        inputs=[multiimage_prompt],
        outputs=[multiimage_prompt],
    )
    
    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
        outputs=[output_buf, video_output],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[extract_glb_btn],
    )
    
    video_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[extract_glb_btn],
    )
    
    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )

# Lanzar la aplicaci贸n Gradio
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))  # Precargar rembg
    except:
        pass
    demo.launch(show_error=True)