Yew Chong
update README
02eae13
raw
history blame
40.6 kB
from openai import OpenAI
import streamlit as st
import streamlit.components.v1 as components
import datetime, time
from dataclasses import dataclass
import math
import base64
## Firestore ??
import os
# import sys
# import inspect
# currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
# parentdir = os.path.dirname(currentdir)
# sys.path.append(parentdir)
# ## ----------------------------------------------------------------
# ## LLM Part
import openai
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
import tiktoken
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from operator import itemgetter
from langchain.schema import StrOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import langchain_community.embeddings.huggingface
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import LLMChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory #, ConversationBufferMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory
import os, dotenv
from dotenv import load_dotenv
load_dotenv()
if not os.path.isdir("./.streamlit"):
os.mkdir("./.streamlit")
print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
with open("./.streamlit/secrets.toml", "w") as f:
f.write(os.environ.get("STREAMLIT_SECRETS"))
print('made new file')
import os, dotenv
from dotenv import load_dotenv
load_dotenv()
if not os.path.isdir("./.streamlit"):
os.mkdir("./.streamlit")
print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
with open("./.streamlit/secrets.toml", "w") as f:
f.write(os.environ.get("STREAMLIT_SECRETS"))
print('made new file')
import db_firestore as db
## Load from streamlit!!
os.environ["HF_TOKEN"] = os.environ.get("HF_TOKEN") or st.secrets["HF_TOKEN"]
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or st.secrets["OPENAI_API_KEY"]
os.environ["FIREBASE_CREDENTIAL"] = os.environ.get("FIREBASE_CREDENTIAL") or st.secrets["FIREBASE_CREDENTIAL"]
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo-1106"
## Hardcode indexes for now
## TODO: Move indexes to firebase
indexes = """Bleeding
ChestPain
Dysphagia
Headache
ShortnessOfBreath
Vomiting
Weakness
Weakness2""".split("\n")
# if "selected_index" not in st.session_state:
# st.session_state.selected_index = 3
# if "index_selectbox" not in st.session_state:
# st.session_state.index_selectbox = "Headache"
# index_selectbox = st.selectbox("Select index",indexes, index=int(st.session_state.selected_index))
# if index_selectbox != indexes[st.session_state.selected_index]:
# st.session_state.selected_index = indexes.index(index_selectbox)
# st.session_state.index_selectbox = index_selectbox
# del st.session_state["store"]
# del st.session_state["store2"]
# del st.session_state["retriever"]
# del st.session_state["retriever2"]
# del st.session_state["chain"]
# del st.session_state["chain2"]
model_name = "bge-large-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings" not in st.session_state:
st.session_state.embeddings = HuggingFaceBgeEmbeddings(
# model_name=model_name,
model_kwargs = model_kwargs,
encode_kwargs = encode_kwargs)
embeddings = st.session_state.embeddings
if "llm" not in st.session_state:
st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
llm = st.session_state.llm
if "llm_i" not in st.session_state:
st.session_state.llm_i = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
llm_i = st.session_state.llm_i
if "llm_gpt4" not in st.session_state:
st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gpt4 = st.session_state.llm_gpt4
# ## ------------------------------------------------------------------------------------------------
# ## Patient part
# index_name = f"indexes/{st.session_state.index_selectbox}/QA"
# if "store" not in st.session_state:
# st.session_state.store = db.get_store(index_name, embeddings=embeddings)
# store = st.session_state.store
if "TEMPLATE" not in st.session_state:
with open('templates/patient.txt', 'r') as file:
TEMPLATE = file.read()
st.session_state.TEMPLATE = TEMPLATE
TEMPLATE = st.session_state.TEMPLATE
# with st.expander("Patient Prompt"):
# TEMPLATE = st.text_area("Patient Prompt", value=st.session_state.TEMPLATE)
prompt = PromptTemplate(
input_variables = ["question", "context"],
template = st.session_state.TEMPLATE
)
# if "retriever" not in st.session_state:
# st.session_state.retriever = store.as_retriever(search_type="similarity", search_kwargs={"k":2})
# retriever = st.session_state.retriever
def format_docs(docs):
return "\n--------------------\n".join(doc.page_content for doc in docs)
# if "memory" not in st.session_state:
# st.session_state.memory = ConversationBufferWindowMemory(
# llm=llm, memory_key="chat_history", input_key="question",
# k=5, human_prefix="student", ai_prefix="patient",)
# memory = st.session_state.memory
# if ("chain" not in st.session_state
# or
# st.session_state.TEMPLATE != TEMPLATE):
# st.session_state.chain = (
# {
# "context": retriever | format_docs,
# "question": RunnablePassthrough()
# } |
# LLMChain(llm=llm, prompt=prompt, memory=memory, verbose=False)
# )
# chain = st.session_state.chain
sp_mapper = {"human":"student","ai":"patient", "user":"student","assistant":"patient"}
# ## ------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------
# ## Grader part
# index_name = f"indexes/{st.session_state.index_selectbox}/Rubric"
# if "store2" not in st.session_state:
# st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
# store2 = st.session_state.store2
if "TEMPLATE2" not in st.session_state:
with open('templates/grader.txt', 'r') as file:
TEMPLATE2 = file.read()
st.session_state.TEMPLATE2 = TEMPLATE2
TEMPLATE2 = st.session_state.TEMPLATE2
# with st.expander("Grader Prompt"):
# TEMPLATE2 = st.text_area("Grader Prompt", value=st.session_state.TEMPLATE2)
prompt2 = PromptTemplate(
input_variables = ["question", "context", "history"],
template = st.session_state.TEMPLATE2
)
def get_patient_chat_history(_):
return st.session_state.get("patient_chat_history")
# if "retriever2" not in st.session_state:
# st.session_state.retriever2 = store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
# retriever2 = st.session_state.retriever2
# def format_docs(docs):
# return "\n--------------------\n".join(doc.page_content for doc in docs)
# fake_history = '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in memory.chat_memory.messages])
# fake_history = '\n'.join([(sp_mapper.get(i['role'], i['role']) + ": "+ i['content']) for i in st.session_state.messages_1])
# st.write(fake_history)
# def y(_):
# return fake_history
# if ("chain2" not in st.session_state
# or
# st.session_state.TEMPLATE2 != TEMPLATE2):
# st.session_state.chain2 = (
# {
# "context": retriever2 | format_docs,
# "history": y,
# "question": RunnablePassthrough(),
# } |
# # LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
# LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
# | {
# "json": itemgetter("text"),
# "text": (
# LLMChain(
# llm=llm,
# prompt=PromptTemplate(
# input_variables=["text"],
# template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
# verbose=False)
# )
# }
# )
# chain2 = st.session_state.chain2
# ## ------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------
# ## Streamlit now
# # from dotenv import load_dotenv
# # import os
# # load_dotenv()
# # key = os.environ.get("OPENAI_API_KEY")
# # client = OpenAI(api_key=key)
# if st.button("Clear History and Memory", type="primary"):
# st.session_state.messages_1 = []
# st.session_state.messages_2 = []
# st.session_state.memory = ConversationBufferWindowMemory(llm=llm, memory_key="chat_history", input_key="question" )
# memory = st.session_state.memory
# ## Testing HTML
# # html_string = """
# # <canvas></canvas>
# # <script>
# # canvas = document.querySelector('canvas');
# # canvas.width = 1024;
# # canvas.height = 576;
# # console.log(canvas);
# # const c = canvas.getContext('2d');
# # c.fillStyle = "green";
# # c.fillRect(0,0,canvas.width,canvas.height);
# # const img = new Image();
# # img.src = "./tksfordumtrive.png";
# # c.drawImage(img, 10, 10);
# # </script>
# # <style>
# # body {
# # margin: 0;
# # }
# # </style>
# # """
# # components.html(html_string,
# # width=1280,
# # height=640)
# st.write("Timer has been removed, switch with this button")
# if st.button(f"Switch to {'PATIENT' if st.session_state.active_chat==2 else 'GRADER'}"+".... Buggy button, please double click"):
# st.session_state.active_chat = 3 - st.session_state.active_chat
# # st.write("Currently in " + ('PATIENT' if st.session_state.active_chat==2 else 'GRADER'))
# # Create two columns for the two chat interfaces
# col1, col2 = st.columns(2)
# # First chat interface
# with col1:
# st.subheader("Student LLM")
# for message in st.session_state.messages_1:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Second chat interface
# with col2:
# # st.write("pls dun spam this, its tons of tokens cos chat history")
# st.subheader("Grader LLM")
# st.write("grader takes a while to load... please be patient")
# for message in st.session_state.messages_2:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Timer and Input
# # time_left = None
# # if st.session_state.start_time:
# # time_elapsed = datetime.datetime.now() - st.session_state.start_time
# # time_left = datetime.timedelta(minutes=10) - time_elapsed
# # st.write(f"Time left: {time_left}")
# # if time_left is None or time_left > datetime.timedelta(0):
# # # Chat 1 is active
# # prompt = st.text_input("Enter your message for Chat 1:")
# # active_chat = 1
# # messages = st.session_state.messages_1
# # elif time_left and time_left <= datetime.timedelta(0):
# # # Chat 2 is active
# # prompt = st.text_input("Enter your message for Chat 2:")
# # active_chat = 2
# # messages = st.session_state.messages_2
# if st.session_state.active_chat==1:
# text_prompt = st.text_input("Enter your message for PATIENT")
# messages = st.session_state.messages_1
# else:
# text_prompt = st.text_input("Enter your message for GRADER")
# messages = st.session_state.messages_2
# from langchain.callbacks.manager import tracing_v2_enabled
# from uuid import uuid4
# import os
# if text_prompt:
# messages.append({"role": "user", "content": text_prompt})
# with (col1 if st.session_state.active_chat == 1 else col2):
# with st.chat_message("user"):
# st.markdown(text_prompt)
# with (col1 if st.session_state.active_chat == 1 else col2):
# with st.chat_message("assistant"):
# message_placeholder = st.empty()
# if True: ## with tracing_v2_enabled(project_name = "streamlit"):
# if st.session_state.active_chat==1:
# full_response = chain.invoke(text_prompt).get("text")
# else:
# full_response = chain2.invoke(text_prompt).get("text").get("text")
# message_placeholder.markdown(full_response)
# messages.append({"role": "assistant", "content": full_response})
# st.write('fake history is:')
# st.write(y(""))
# st.write('done')
## ====================
if not st.session_state.get("scenario_list", None):
st.session_state.scenario_list = indexes
def init_patient_llm():
if "messages_1" not in st.session_state:
st.session_state.messages_1 = []
## messages 2?
index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/QA"
if "store" not in st.session_state:
st.session_state.store = db.get_store(index_name, embeddings=embeddings)
if "retriever" not in st.session_state:
st.session_state.retriever = st.session_state.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(
llm=llm, memory_key="chat_history", input_key="question",
k=5, human_prefix="student", ai_prefix="patient",)
if ("chain" not in st.session_state
or
st.session_state.TEMPLATE != TEMPLATE):
st.session_state.chain = (
{
"context": st.session_state.retriever | format_docs,
"question": RunnablePassthrough()
} |
LLMChain(llm=llm, prompt=prompt, memory=st.session_state.memory, verbose=False)
)
def init_grader_llm():
## Grader
index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/Rubric"
## Reset time
st.session_state.start_time = False
if "store2" not in st.session_state:
st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
if "retriever2" not in st.session_state:
st.session_state.retriever2 = st.session_state.store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
## Re-init history
st.session_state["patient_chat_history"] = "History\n" + '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in st.session_state.memory.chat_memory.messages])
if ("chain2" not in st.session_state
or
st.session_state.TEMPLATE2 != TEMPLATE2):
st.session_state.chain2 = (
{
"context": st.session_state.retriever2 | format_docs,
"history": (get_patient_chat_history),
"question": RunnablePassthrough(),
} |
# LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
| {
"json": itemgetter("text"),
"text": (
LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["text"],
template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
verbose=False)
)
}
)
login_info = {
"bob":"builder",
"student1": "password",
"admin":"admin"
}
def set_username(x):
st.session_state.username = x
def validate_username(username, password):
if login_info.get(username) == password:
set_username(username)
else:
st.warning("Wrong username or password")
return None
if not st.session_state.get("username"):
## ask to login
st.title("Login")
username = st.text_input("Username:")
password = st.text_input("Password:", type="password")
login_button = st.button("Login", on_click=validate_username, args=[username, password])
else:
if True: ## Says hello and logout
col_1, col_2 = st.columns([1,3])
col_2.title(f"Hello there, {st.session_state.username}")
# Display logout button
if col_1.button('Logout'):
# Remove username from session state
del st.session_state.username
# Rerun the app to go back to the login view
st.rerun()
scenario_tab, dashboard_tab = st.tabs(["Training", "Dashboard"])
# st.header("head")
# st.markdown("## markdown")
# st.caption("caption")
# st.divider()
# import pandas as pd
# import numpy as np
# map_data = pd.DataFrame(
# np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
# columns=['lat', 'lon'])
# st.map(map_data)
class ScenarioTabIndex:
SELECT_SCENARIO = 0
PATIENT_LLM = 1
GRADER_LLM = 2
def set_scenario_tab_index(x):
st.session_state.scenario_tab_index=x
return None
def select_scenario_and_change_tab(_):
set_scenario_tab_index(ScenarioTabIndex.PATIENT_LLM)
def go_to_patient_llm():
selected_scenario = st.session_state.get('selected_scenario')
if selected_scenario is None or selected_scenario < 0:
st.warning("Please select a scenario!")
else:
## TODO: Clear state for time, LLM, Index, etc
states = ["store", "store2","retriever","retriever2","chain","chain2"]
for state_to_del in states:
if state_to_del in st.session_state:
del st.session_state[state_to_del]
init_patient_llm()
set_scenario_tab_index(ScenarioTabIndex.PATIENT_LLM)
if not st.session_state.get("scenario_tab_index"):
set_scenario_tab_index(ScenarioTabIndex.SELECT_SCENARIO)
with scenario_tab:
## Check in select scenario
if st.session_state.scenario_tab_index == ScenarioTabIndex.SELECT_SCENARIO:
def change_scenario(scenario_index):
st.session_state.selected_scenario = scenario_index
if st.session_state.get("selected_scenario", None) is None:
st.session_state.selected_scenario = -1
total_cols = 3
rows = list()
# for _ in range(0, number_of_indexes, total_cols):
# rows.extend(st.columns(total_cols))
st.header(f"Selected Scenario: {st.session_state.scenario_list[st.session_state.selected_scenario] if st.session_state.selected_scenario>=0 else 'None'}")
for i, scenario in enumerate(st.session_state.scenario_list):
if i % total_cols == 0:
rows.extend(st.columns(total_cols))
curr_col = rows[(-total_cols + i % total_cols)]
tile = curr_col.container(height=120)
## TODO: Implement highlight box if index is selected
# if st.session_state.selected_scenario == i:
# tile.markdown("<style>background: pink !important;</style>", unsafe_allow_html=True)
tile.write(":balloon:")
tile.button(label=scenario, on_click=change_scenario, args=[i])
select_scenario_btn = st.button("Select Scenario", on_click=go_to_patient_llm, args=[])
elif st.session_state.scenario_tab_index == ScenarioTabIndex.PATIENT_LLM:
st.header("Patient info")
## TODO: Put the patient's info here, from SCENARIO
# st.write("Pull the info here!!!")
col1, col2, col3 = st.columns([1,3,1])
with col1:
back_to_scenario_btn = st.button("Back to selection", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])
with col3:
start_timer_button = st.button("START")
with col2:
TIME_LIMIT = 60*10 ## to change to 10 minutes
time.sleep(1)
if start_timer_button:
st.session_state.start_time = datetime.datetime.now()
# st.session_state.time = -1 if not st.session_state.get('time') else st.session_state.get('time')
st.session_state.start_time = False if not st.session_state.get('start_time') else st.session_state.start_time
from streamlit.components.v1 import html
html(f"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans&display=swap');
@import url('https://fonts.googleapis.com/css2?family=VT323&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Monofett&display=swap');
</style>
<style>
html {{
font-family: 'Pixelify Sans', monospace, serif;
font-family: 'VT323', monospace, sans-serif;
font-family: 'Monofett', monospace, sans-serif;
font-family: 'Times New Roman', sans-serif;
background-color: #0E1117 !important;
color: RGB(250,250,250);
// border-radius: 25%;
// border: 1px solid #0E1117;
}}
html, body {{
// background-color: transparent !important;
// margin: 10px;
// border: 1px solid pink;
text-align: center;
}}
body {{
background-color: #0E1117;
// margin: 10px;
// border: 1px solid pink;
}}
body #ttime {{
font-weight: bold;
font-family: 'VT323', monospace, sans-serif;
// font-family: 'Pixelify Sans', monospace, serif;
}}
</style>
<div>
<h1>Time left</h1>
<h1 id="ttime"> </h1>
</div>
<script>
var x = setInterval(function() {{
var start_time_str = "{st.session_state.start_time}";
var start_date = new Date(start_time_str);
var curr_date = new Date();
var time_difference = curr_date - start_date;
var time_diff_secs = Math.floor(time_difference / 1000);
var time_left = {TIME_LIMIT} - time_diff_secs;
var mins = Math.floor(time_left / 60);
var secs = time_left % 60;
var fmins = mins.toString().padStart(2, '0');
var fsecs = secs.toString().padStart(2, '0');
console.log("run");
if (start_time_str == "False") {{
document.getElementById("ttime").innerHTML = 'Press "Start" to start!';
clearInterval(x);
}}
else if (time_left <= 0) {{
document.getElementById("ttime").innerHTML = "Time's Up!!!";
clearInterval(x);
}}
else {{
document.getElementById("ttime").innerHTML = `${{fmins}}:${{fsecs}}`;
}}
}}, 999)
</script>
""",
)
with open("./public/char.png", "rb") as f:
contents = f.read()
data_url = base64.b64encode(contents).decode("utf-8")
with open("./public/chars/Male_talk.gif", "rb") as f:
contents = f.read()
patient_url = base64.b64encode(contents).decode("utf-8")
interactive_container = st.container()
user_input_col ,r = st.columns([4,1])
def to_grader_llm():
init_grader_llm()
set_scenario_tab_index(ScenarioTabIndex.GRADER_LLM)
with r:
to_grader_btn = st.button("To Grader", on_click=to_grader_llm)
with user_input_col:
user_inputs = st.text_input("", placeholder="Chat with the patient here!", key="user_inputs")
if user_inputs:
response = st.session_state.chain.invoke(user_inputs).get("text")
st.session_state.patient_response = response
with interactive_container:
html(f"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans&display=swap');
</style>
<style>
html {{
font-family: 'Pixelify Sans', monospace, serif;
}}
</style>
<div>
<img src="data:image/png;base64,{data_url}" />
<span id="user_input">You: {st.session_state.get('user_inputs') or ''}</span>
</div>
<div>
<img src="data:image/gif;base64,{patient_url}" /><br/>
<span id="bot_response">{'Patient: '+st.session_state.get('patient_response') if st.session_state.get('patient_response') else '...'}</span>
</div>
""", height=500)
elif st.session_state.scenario_tab_index == ScenarioTabIndex.GRADER_LLM:
st.session_state.grader_output = "" if not st.session_state.get("grader_output") else st.session_state.grader_output
def get_grades():
txt = f"""
<summary>
{st.session_state.diagnosis}
</summary>
<differential-1>
{st.session_state.differential_1}
</differential-1>
<differential-2>
{st.session_state.differential_2}
</differential-2>
<differential-3>
{st.session_state.differential_3}
</differential-3>
"""
response = st.session_state.chain2.invoke(txt)
st.session_state.grader_output = response
st.session_state.has_llm_output = bool(st.session_state.get("grader_output"))
## TODO: False for now, need check llm output!
with st.expander("Your Diagnosis and Differentials", expanded=not st.session_state.has_llm_output):
st.session_state.diagnosis = st.text_area("Input your case summary and **main** diagnosis:", placeholder="This is a young gentleman with significant family history of stroke, and medical history of poorly-controlled hypertension. He presents with acute onset of bitemporal headache associated with dysarthria and meningism symptoms. Important negatives include the absence of focal neurological deficits, ataxia, and recent trauma.")
st.divider()
st.session_state.differential_1 = st.text_input("Differential 1")
st.session_state.differential_2 = st.text_input("Differential 2")
st.session_state.differential_3 = st.text_input("Differential 3")
with st.columns(6)[5]:
send_for_grading = st.button("Get grades!", on_click=get_grades)
with st.expander("Your rubrics", expanded=st.session_state.has_llm_output):
if st.session_state.grader_output:
st.write(st.session_state.grader_output.get("text").get("text"))
# back_btn = st.button("back to LLM?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.PATIENT_LLM])
back_btn = st.button("New Scenario?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])
with dashboard_tab:
import dotenv
import firebase_admin, json
from firebase_admin import credentials, storage, firestore
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
cred = credentials.Certificate(json.loads(os.environ.get("FIREBASE_CREDENTIAL")))
# Initialize Firebase (if not already initialized)
if not firebase_admin._apps:
firebase_admin.initialize_app(cred, {'storageBucket': 'healthhack-store.appspot.com'})
#firebase_admin.initialize_app(cred,{'storageBucket': 'healthhack-store.appspot.com'}) # connecting to firebase
db_client = firestore.client()
docs = db_client.collection("clinical_scores").stream()
# Create a list of dictionaries from the documents
data = []
for doc in docs:
doc_dict = doc.to_dict()
doc_dict['document_id'] = doc.id # In case you need the document ID later
data.append(doc_dict)
# Create a DataFrame
df = pd.DataFrame(data)
username = st.session_state.get("username")
st.title("Dashboard")
# Convert date from string to datetime if it's not already in datetime format
df['date'] = pd.to_datetime(df['date'], errors='coerce')
# Streamlit page configuration
#st.set_page_config(page_title="Interactive Data Dashboard", layout="wide")
# Use df_selection for filtering data based on authenticated user
if username != 'admin':
df_selection = df[df['name'] == username]
else:
df_selection = df # Admin sees all data
# Chart Title: Student Performance Dashboard
st.title(":bar_chart: Student Performance Dashboard")
st.markdown("##")
# Chart 1: Total attempts
if df_selection.empty:
st.error("No data available to display.")
else:
# Total attempts by name (filtered)
total_attempts_by_name = df_selection.groupby("name")['date'].count().reset_index()
total_attempts_by_name.columns = ['name', 'total_attempts']
# For a single point or multiple points, use a scatter plot
fig_total_attempts = px.scatter(
total_attempts_by_name,
x="name",
y="total_attempts",
title="<b>Total Attempts</b>",
size='total_attempts', # Adjust the size of points
color_discrete_sequence=["#0083B8"] * len(total_attempts_by_name),
template="plotly_white",
text='total_attempts' # Display total_attempts as text labels
)
# Add text annotation for each point
for line in range(0, total_attempts_by_name.shape[0]):
fig_total_attempts.add_annotation(
text=str(total_attempts_by_name['total_attempts'].iloc[line]),
x=total_attempts_by_name['name'].iloc[line],
y=total_attempts_by_name['total_attempts'].iloc[line],
showarrow=True,
font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center",
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="#636363",
ax=20,
ay=-30,
bordercolor="#c7c7c7",
borderwidth=2,
borderpad=4,
bgcolor="#ff7f0e",
opacity=0.8
)
# Update traces for styling
fig_total_attempts.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the scatter plot in Streamlit
st.plotly_chart(fig_total_attempts, use_container_width=True)
# Chart 2 (students only): Personal scores over time
if username != 'admin':
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
#fig = px.bar(df_selection, x='date', y='global_score', title='Your scores!')
if len(df_selection) > 1:
# # If more than one point, use a bar chart
# fig = px.bar(df_selection, x='date', y='global_score', title='Global Score Over Time')
# # fig.update_yaxes(
# # tickmode='array',
# # tickvals=[1, 2, 3, 4, 5], # Reverse the order of tickvals
# # ticktext=['A', 'B','C','D','E'] # Reverse the order of ticktext
# # )
# Mapping dictionary
grade_to_score = {'A': 100, 'B': 80, 'C': 60, 'D': 40, 'E': 20}
# Apply mapping to convert letter grades to numerical scores
df_selection['numeric_score'] = df_selection['global_score'].map(grade_to_score)
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
# Check if there's more than one point in the DataFrame
if len(df_selection) > 1:
# Create a bar chart using Plotly Express
fig = px.bar(df_selection, x='date', y='numeric_score', title='Your scores over time')
else:
# Create a bar chart with just one point
fig = px.bar(df_selection, x='date', y='numeric_score', title='Global Score')
# Manually set the y-axis ticks and labels
fig.update_yaxes(
tickmode='array',
tickvals=list(grade_to_score.values()), # Positions for the ticks
ticktext=list(grade_to_score.keys()), # Text labels for the ticks
range=[0, 120] # Extend the range a bit beyond 100 to accommodate 'A'
)
# # Use st.plotly_chart to display the chart in Streamlit
# st.plotly_chart(fig, use_container_width=True)
else:
# For a single point, use a scatter plot
fig = px.scatter(df_selection, x='date', y='global_score', title='Global Score',
text='global_score', size_max=60)
# Add text annotation
for line in range(0,df_selection.shape[0]):
fig.add_annotation(text=df_selection['global_score'].iloc[line],
x=df_selection['date'].iloc[line], y=df_selection['global_score'].iloc[line],
showarrow=True, font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#636363",
ax=20, ay=-30, bordercolor="#c7c7c7", borderwidth=2, borderpad=4, bgcolor="#ff7f0e",
opacity=0.8)
fig.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the chart in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Show students their scores over time
st.dataframe(df_selection[['date', 'global_score', 'name']])
# Chart 3 (admin only): Global score chart
# Define the order of categories explicitly
order_of_categories = ['A', 'B', 'C', 'D', 'E']
# Convert global_score to a categorical type with the specified order
df_selection['global_score'] = pd.Categorical(df_selection['global_score'], categories=order_of_categories, ordered=True)
# Plot the histogram
fig_score_distribution = px.histogram(
df_selection,
x="global_score",
title="<b>Global Score Distribution</b>",
color_discrete_sequence=["#33CFA5"],
category_orders={"global_score": ["A", "B", "C", "D", "E"]}
)
if username == 'admin':
st.plotly_chart(fig_score_distribution, use_container_width=True)
# Chart 4 (admin only): Students with <5 attempts (filtered)
if username == 'admin':
students_with_less_than_5_attempts = total_attempts_by_name[total_attempts_by_name['total_attempts'] < 5]
fig_less_than_5_attempts = px.bar(
students_with_less_than_5_attempts,
x="name",
y="total_attempts",
title="<b>Students with <5 Attempts</b>",
color_discrete_sequence=["#D62728"] * len(students_with_less_than_5_attempts),
template="plotly_white",
)
if username == 'admin':
st.plotly_chart(fig_less_than_5_attempts, use_container_width=True)
# Selection of a student for detailed view (<5 attempts) - based on filtered data
if username == 'admin':
selected_student_less_than_5 = st.selectbox("Select a student with less than 5 attempts to view details:", students_with_less_than_5_attempts['name'])
if selected_student_less_than_5:
st.write(df_selection[df_selection['name'] == selected_student_less_than_5])
# Chart 5 (admin only): Students with at least one global score of 'C', 'D', 'E' (filtered)
if username == 'admin':
students_with_cde = df_selection[df_selection['global_score'].isin(['C', 'D', 'E'])].groupby("name")['date'].count().reset_index()
students_with_cde.columns = ['name', 'total_attempts']
fig_students_with_cde = px.bar(
students_with_cde,
x="name",
y="total_attempts",
title="<b>Students with at least one global score of 'C', 'D', 'E'</b>",
color_discrete_sequence=["#FF7F0E"] * len(students_with_cde),
template="plotly_white",
)
st.plotly_chart(fig_students_with_cde, use_container_width=True)
# Selection of a student for detailed view (score of 'C', 'D', 'E') - based on filtered data
if username == 'admin':
selected_student_cde = st.selectbox("Select a student with at least one score of 'C', 'D', 'E' to view details:", students_with_cde['name'])
if selected_student_cde:
st.write(df_selection[df_selection['name'] == selected_student_cde])
# Chart 7 (all): Radar Chart
# Mapping grades to numeric values
grade_to_numeric = {'A': 90, 'B': 70, 'C': 50, 'D': 30, 'E': 10}
df.replace(grade_to_numeric, inplace=True)
# Calculate average numeric scores for each category
average_scores = df.groupby('name')[['hx_PC_score', 'hx_AS_score', 'hx_others_score', 'differentials_score']].mean().reset_index()
if username == 'admin':
st.title('Average Scores Radar Chart')
else:
st.title('Performance in each segment as compared to your friends!')
# Categories for the radar chart
categories = ['Presenting complaint', 'Associated symptoms', '(Others)', 'Differentials']
st.markdown("""
###
Double click on the names in the legend to include/exclude them from the plot.
""")
# Custom colors for better contrast
colors = ['gold', 'cyan', 'magenta', 'green']
# Plotly Radar Chart
fig = go.Figure()
for index, row in average_scores.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row['hx_PC_score'], row['hx_AS_score'], row['hx_others_score'], row['differentials_score']],
theta=categories,
fill='toself',
name=row['name'],
line=dict(color=colors[index % len(colors)])
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100], # Numeric range
tickvals=[10, 30, 50, 70, 90], # Positions for the grade labels
ticktext=['E', 'D', 'C', 'B', 'A'] # Grade labels
)),
showlegend=True,
height=600, # Set the height of the figure
width=600 # Set the width of the figure
)
# Display the figure in Streamlit
st.plotly_chart(fig, use_container_width=True)