Spaces:
Sleeping
Sleeping
# cal.py | |
import torch | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
# Configuration class | |
class Config: | |
CLASSES = ['asparagus', 'avocados', 'broccoli', 'cabbage', | |
'celery', 'cucumber', 'green_apples', | |
'green_beans', 'green_capsicum', 'green_grapes', 'kiwifruit', | |
'lettuce', 'limes', 'peas', 'spinach'] | |
CALORIES_DICT = { | |
'asparagus': 20, | |
'avocados': 160, | |
'broccoli': 55, | |
'cabbage': 25, | |
'celery': 16, | |
'cucumber': 16, | |
'green_apples': 52, | |
'green_beans': 31, | |
'green_capsicum': 20, | |
'green_grapes': 69, | |
'kiwifruit': 61, | |
'lettuce': 15, | |
'limes': 30, | |
'peas': 81, | |
'spinach': 23 | |
} | |
# Load the model | |
def load_model(): | |
model = YOLO('./best.pt') | |
return model | |
# Function to make predictions on a single image | |
def predict_image(image_path, model, conf_threshold=0.03): | |
# Perform inference on the image | |
results = model.predict( | |
source=image_path, | |
imgsz=640, | |
conf=conf_threshold | |
) | |
# Load the image for visualization | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# To store detailed information about detections | |
detection_details = [] | |
# Iterate over detections | |
for result in results[0].boxes.data: | |
# Extract bounding box coordinates, confidence score, and class ID | |
x1, y1, x2, y2, confidence, class_id = result.cpu().numpy() | |
# Draw the bounding box with top confidence score | |
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color=(0, 255, 0), thickness=2) | |
label = f"{Config.CLASSES[int(class_id)]}: {confidence:.2f}" | |
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), thickness=1) | |
# Save details for printing below | |
detection_details.append({ | |
"class": Config.CLASSES[int(class_id)], | |
"top_confidence": confidence, | |
"bbox": (x1, y1, x2, y2) | |
}) | |
return image, detection_details | |
# Function to calculate detected items and their calories | |
def calculate_calories(detection_details): | |
detected_items = [] | |
for det in detection_details: | |
item = det["class"] | |
calories = Config.CALORIES_DICT[item] | |
confidence = det["top_confidence"] | |
detected_items.append((item, calories, confidence)) | |
return detected_items |