File size: 11,950 Bytes
5693654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""DeepClaude 服务,用于协调 DeepSeek 和 Claude API 的调用"""
import json
import time
import tiktoken
import asyncio
from typing import AsyncGenerator
from app.utils.logger import logger
from app.clients import DeepSeekClient, ClaudeClient


class DeepClaude:
    """处理 DeepSeek 和 Claude API 的流式输出衔接"""

    def __init__(self, deepseek_api_key: str, claude_api_key: str, 
                 deepseek_api_url: str = "https://api.deepseek.com/v1/chat/completions", 
                 claude_api_url: str = "https://api.anthropic.com/v1/messages",
                 claude_provider: str = "anthropic",
                 is_origin_reasoning: bool = True):
        """初始化 API 客户端
        
        Args:
            deepseek_api_key: DeepSeek API密钥
            claude_api_key: Claude API密钥
        """
        self.deepseek_client = DeepSeekClient(deepseek_api_key, deepseek_api_url)
        self.claude_client = ClaudeClient(claude_api_key, claude_api_url, claude_provider)
        self.is_origin_reasoning = is_origin_reasoning

    async def chat_completions_with_stream(
        self,
        messages: list,
        model_arg: tuple[float, float, float, float],
        deepseek_model: str = "deepseek-reasoner",
        claude_model: str = "claude-3-5-sonnet-20241022"
    ) -> AsyncGenerator[bytes, None]:
        """处理完整的流式输出过程
        
        Args:
            messages: 初始消息列表
            model_arg: 模型参数
            deepseek_model: DeepSeek 模型名称
            claude_model: Claude 模型名称
            
        Yields:
            字节流数据,格式如下:
            {
                "id": "chatcmpl-xxx",
                "object": "chat.completion.chunk",
                "created": timestamp,
                "model": model_name,
                "choices": [{
                    "index": 0,
                    "delta": {
                        "role": "assistant",
                        "reasoning_content": reasoning_content,
                        "content": content
                    }
                }]
            }
        """
        # 生成唯一的会话ID和时间戳
        chat_id = f"chatcmpl-{hex(int(time.time() * 1000))[2:]}"
        created_time = int(time.time())

        # 创建队列,用于收集输出数据
        output_queue = asyncio.Queue()
        # 队列,用于传递 DeepSeek 推理内容给 Claude
        claude_queue = asyncio.Queue()

        # 用于存储 DeepSeek 的推理累积内容
        reasoning_content = []

        async def process_deepseek():
            logger.info(f"开始处理 DeepSeek 流,使用模型:{deepseek_model}, 提供商: {self.deepseek_client.provider}")
            try:
                async for content_type, content in self.deepseek_client.stream_chat(messages, deepseek_model, self.is_origin_reasoning):
                    if content_type == "reasoning":
                        reasoning_content.append(content)
                        response = {
                            "id": chat_id,
                            "object": "chat.completion.chunk",
                            "created": created_time,
                            "model": deepseek_model,
                            "choices": [{
                                "index": 0,
                                "delta": {
                                    "role": "assistant",
                                    "reasoning_content": content,
                                    "content": ""
                                }
                            }]
                        }
                        await output_queue.put(f"data: {json.dumps(response)}\n\n".encode('utf-8'))
                    elif content_type == "content":
                        # 当收到 content 类型时,将完整的推理内容发送到 claude_queue,并结束 DeepSeek 流处理
                        logger.info(f"DeepSeek 推理完成,收集到的推理内容长度:{len(''.join(reasoning_content))}")
                        await claude_queue.put("".join(reasoning_content))
                        break
            except Exception as e:
                logger.error(f"处理 DeepSeek 流时发生错误: {e}")
                await claude_queue.put("")
            # 用 None 标记 DeepSeek 任务结束
            logger.info("DeepSeek 任务处理完成,标记结束")
            await output_queue.put(None)

        async def process_claude():
            try:
                logger.info("等待获取 DeepSeek 的推理内容...")
                reasoning = await claude_queue.get()
                logger.debug(f"获取到推理内容,内容长度:{len(reasoning) if reasoning else 0}")
                if not reasoning:
                    logger.warning("未能获取到有效的推理内容,将使用默认提示继续")
                    reasoning = "获取推理内容失败"
                # 构造 Claude 的输入消息
                claude_messages = messages.copy()
                combined_content = f"""
                Here's my another model's reasoning process:\n{reasoning}\n\n
                Based on this reasoning, provide your response directly to me:"""
                
                # 改造最后一个消息对象,判断消息对象是 role = user,然后在这个对象的 content 后追加新的 String
                last_message = claude_messages[-1]
                if last_message.get("role", "") == "user":
                    original_content = last_message["content"]
                    fixed_content = f"Here's my original input:\n{original_content}\n\n{combined_content}"
                    last_message["content"] = fixed_content
                # 处理可能 messages 内存在 role = system 的情况,如果有,则去掉当前这一条的消息对象
                claude_messages = [message for message in claude_messages if message.get("role", "") != "system"]

                logger.info(f"开始处理 Claude 流,使用模型: {claude_model}, 提供商: {self.claude_client.provider}")

                async for content_type, content in self.claude_client.stream_chat(
                    messages=claude_messages,
                    model_arg=model_arg,
                    model=claude_model,
                ):
                    if content_type == "answer":
                        response = {
                            "id": chat_id,
                            "object": "chat.completion.chunk",
                            "created": created_time,
                            "model": claude_model,
                            "choices": [{
                                "index": 0,
                                "delta": {
                                    "role": "assistant",
                                    "content": content
                                }
                            }]
                        }
                        await output_queue.put(f"data: {json.dumps(response)}\n\n".encode('utf-8'))
            except Exception as e:
                logger.error(f"处理 Claude 流时发生错误: {e}")
            # 用 None 标记 Claude 任务结束
            logger.info("Claude 任务处理完成,标记结束")
            await output_queue.put(None)
        
        # 创建并发任务
        deepseek_task = asyncio.create_task(process_deepseek())
        claude_task = asyncio.create_task(process_claude())
        
        # 等待两个任务完成,通过计数判断
        finished_tasks = 0
        while finished_tasks < 2:
            item = await output_queue.get()
            if item is None:
                finished_tasks += 1
            else:
                yield item
        
        # 发送结束标记
        yield b'data: [DONE]\n\n'

    async def chat_completions_without_stream(
        self,
        messages: list,
        model_arg: tuple[float, float, float, float],
        deepseek_model: str = "deepseek-reasoner",
        claude_model: str = "claude-3-5-sonnet-20241022"
    ) -> dict:
        """处理非流式输出过程
        
        Args:
            messages: 初始消息列表
            model_arg: 模型参数
            deepseek_model: DeepSeek 模型名称
            claude_model: Claude 模型名称
            
        Returns:
            dict: OpenAI 格式的完整响应
        """
        chat_id = f"chatcmpl-{hex(int(time.time() * 1000))[2:]}"
        created_time = int(time.time())
        reasoning_content = []

        # 1. 获取 DeepSeek 的推理内容(仍然使用流式)
        try:
            async for content_type, content in self.deepseek_client.stream_chat(messages, deepseek_model, self.is_origin_reasoning):
                if content_type == "reasoning":
                    reasoning_content.append(content)
                elif content_type == "content":
                    break
        except Exception as e:
            logger.error(f"获取 DeepSeek 推理内容时发生错误: {e}")
            reasoning_content = ["获取推理内容失败"]

        # 2. 构造 Claude 的输入消息
        reasoning = "".join(reasoning_content)
        claude_messages = messages.copy()

        combined_content = f"""
        Here's my another model's reasoning process:\n{reasoning}\n\n
        Based on this reasoning, provide your response directly to me:"""
        
        # 改造最后一个消息对象,判断消息对象是 role = user,然后在这个对象的 content 后追加新的 String
        last_message = claude_messages[-1]
        if last_message.get("role", "") == "user":
            original_content = last_message["content"]
            fixed_content = f"Here's my original input:\n{original_content}\n\n{combined_content}"
            last_message["content"] = fixed_content

        # 处理可能 messages 内存在 role = system 的情况
        claude_messages = [message for message in claude_messages if message.get("role", "") != "system"]

        # 拼接所有 content 为一个字符串,计算 token
        token_content = "\n".join([message.get("content", "") for message in claude_messages])
        encoding = tiktoken.encoding_for_model("gpt-4o")
        input_tokens = encoding.encode(token_content)
        logger.debug(f"输入 Tokens: {len(input_tokens)}")

        logger.debug("claude messages: " + str(claude_messages))
        # 3. 获取 Claude 的非流式响应
        try:
            answer = ""
            async for content_type, content in self.claude_client.stream_chat(
                messages=claude_messages,
                model_arg=model_arg,
                model=claude_model,
                stream=False
            ):
                if content_type == "answer":
                    answer += content
                output_tokens = encoding.encode(answer)
                logger.debug(f"输出 Tokens: {len(output_tokens)}")

            # 4. 构造 OpenAI 格式的响应
            return {
                "id": chat_id,
                "object": "chat.completion",
                "created": created_time,
                "model": claude_model,
                "choices": [{
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": answer,
                        "reasoning_content": reasoning
                    },
                    "finish_reason": "stop"
                }],
                "usage": {
                    "prompt_tokens": len(input_tokens),
                    "completion_tokens": len(output_tokens),
                    "total_tokens": len(input_tokens + output_tokens)
                }
            }
        except Exception as e:
            logger.error(f"获取 Claude 响应时发生错误: {e}")
            raise e