Chenhao
update
5c7869e
raw
history blame
12.6 kB
# coding=utf-8
from io import BytesIO
from typing import Optional, Dict, Any, List, Set, Union, Tuple
# System Libraries
import os
import time
import asyncio
# Third-party imports
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.responses import HTMLResponse
import numpy as np
import torch
import torchaudio
from funasr import AutoModel
from dotenv import load_dotenv
import os
import time
import gradio as gr
# ๅŠ ่ฝฝ็Žฏๅขƒๅ˜้‡
load_dotenv()
# ่Žทๅ–API Token
API_TOKEN: str = os.getenv("API_TOKEN")
if not API_TOKEN:
raise RuntimeError("API_TOKEN environment variable is not set")
# ่ฎพ็ฝฎ่ฎค่ฏ
security = HTTPBearer()
app = FastAPI(
title="SenseVoice API",
description="Speech To Text API Service",
version="1.0.0"
)
# ๅ…่ฎธ่ทจๅŸŸ่ฏทๆฑ‚
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ๅˆๅง‹ๅŒ–ๆจกๅž‹
model = AutoModel(
model="FunAudioLLM/SenseVoiceSmall",
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_kwargs={"max_single_segment_time": 30000},
hub="hf",
device="cuda"
)
emotion_dict: Dict[str, str] = {
"<|HAPPY|>": "๐Ÿ˜Š",
"<|SAD|>": "๐Ÿ˜”",
"<|ANGRY|>": "๐Ÿ˜ก",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "๐Ÿ˜ฐ",
"<|DISGUSTED|>": "๐Ÿคข",
"<|SURPRISED|>": "๐Ÿ˜ฎ",
}
event_dict: Dict[str, str] = {
"<|BGM|>": "๐ŸŽผ",
"<|Speech|>": "",
"<|Applause|>": "๐Ÿ‘",
"<|Laughter|>": "๐Ÿ˜€",
"<|Cry|>": "๐Ÿ˜ญ",
"<|Sneeze|>": "๐Ÿคง",
"<|Breath|>": "",
"<|Cough|>": "๐Ÿคง",
}
emoji_dict: Dict[str, str] = {
"<|nospeech|><|Event_UNK|>": "โ“",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "๐Ÿ˜Š",
"<|SAD|>": "๐Ÿ˜”",
"<|ANGRY|>": "๐Ÿ˜ก",
"<|NEUTRAL|>": "",
"<|BGM|>": "๐ŸŽผ",
"<|Speech|>": "",
"<|Applause|>": "๐Ÿ‘",
"<|Laughter|>": "๐Ÿ˜€",
"<|FEARFUL|>": "๐Ÿ˜ฐ",
"<|DISGUSTED|>": "๐Ÿคข",
"<|SURPRISED|>": "๐Ÿ˜ฎ",
"<|Cry|>": "๐Ÿ˜ญ",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "๐Ÿคง",
"<|Breath|>": "",
"<|Cough|>": "๐Ÿ˜ท",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict: Dict[str, str] = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set: Set[str] = {"๐Ÿ˜Š", "๐Ÿ˜”", "๐Ÿ˜ก", "๐Ÿ˜ฐ", "๐Ÿคข", "๐Ÿ˜ฎ"}
event_set: Set[str] = {"๐ŸŽผ", "๐Ÿ‘", "๐Ÿ˜€", "๐Ÿ˜ญ", "๐Ÿคง", "๐Ÿ˜ท"}
def format_text_with_emotion(text: str) -> str:
"""Format text with emotion and event markers"""
token_count: Dict[str, int] = {}
original_text = text
for token in emoji_dict:
token_count[token] = text.count(token)
# Determine dominant emotion
dominant_emotion = "<|NEUTRAL|>"
for emotion in emotion_dict:
if token_count[emotion] > token_count[dominant_emotion]:
dominant_emotion = emotion
# Add event markers
text = original_text
for event in event_dict:
if token_count[event] > 0:
text = event_dict[event] + text
# Replace all tokens with their emoji equivalents
for token in emoji_dict:
text = text.replace(token, emoji_dict[token])
# Add dominant emotion
text = text + emotion_dict[dominant_emotion]
# Clean up emoji spacing
for emoji in emo_set.union(event_set):
text = text.replace(" " + emoji, emoji)
text = text.replace(emoji + " ", emoji)
return text.strip()
def format_text_advanced(text: str) -> str:
"""Advanced text formatting with multilingual and complex token handling"""
def get_emotion(text: str) -> Optional[str]:
return text[-1] if text[-1] in emo_set else None
def get_event(text: str) -> Optional[str]:
return text[0] if text[0] in event_set else None
# Handle special cases
text = text.replace("<|nospeech|><|Event_UNK|>", "โ“")
for lang in lang_dict:
text = text.replace(lang, "<|lang|>")
# Process text segments
text_segments: List[str] = [format_text_with_emotion(segment).strip() for segment in text.split("<|lang|>")]
formatted_text = " " + text_segments[0]
current_event = get_event(formatted_text)
# Merge segments
for i in range(1, len(text_segments)):
if not text_segments[i]:
continue
if get_event(text_segments[i]) == current_event and get_event(text_segments[i]) is not None:
text_segments[i] = text_segments[i][1:]
current_event = get_event(text_segments[i])
if get_emotion(text_segments[i]) is not None and get_emotion(text_segments[i]) == get_emotion(formatted_text):
formatted_text = formatted_text[:-1]
formatted_text += text_segments[i].strip()
formatted_text = formatted_text.replace("The.", " ")
return formatted_text.strip()
async def audio_stt(audio: torch.Tensor, sample_rate: int, language: str = "auto") -> str:
"""Process audio tensor and perform speech-to-text conversion.
Args:
audio: Input audio tensor
sample_rate: Audio sample rate in Hz
language: Target language code (auto/zh/en/yue/ja/ko/nospeech)
Returns:
str: Transcribed and formatted text result
"""
try:
# Normalize
if audio.dtype != torch.float32:
if audio.dtype == torch.int16:
audio = audio.float() / torch.iinfo(torch.int16).max
elif audio.dtype == torch.int32:
audio = audio.float() / torch.iinfo(torch.int32).max
else:
audio = audio.float()
# Make sure audio in correct range
if audio.abs().max() > 1.0:
audio = audio / audio.abs().max()
# Convert to mono channel
if len(audio.shape) > 1:
audio = audio.mean(dim=0)
audio = audio.squeeze()
# Resample
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(
orig_freq=sample_rate,
new_freq=16000
)
audio = resampler(audio.unsqueeze(0)).squeeze(0)
text = model.generate(
input=audio,
cache={},
language=language,
use_itn=True,
batch_size_s=500,
merge_vad=True
)
# ๆ ผๅผๅŒ–็ป“ๆžœ
result = text[0]["text"]
return format_text_advanced(result)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Audio processing failed in audio_stt: {str(e)}"
)
async def process_audio(audio_data: bytes, language: str = "auto") -> str:
"""Process audio data and return transcription result.
Args:
audio_data: Raw audio data in bytes
language: Target language code
Returns:
str: Transcribed and formatted text
Raises:
HTTPException: If audio processing fails
"""
try:
audio_buffer = BytesIO(audio_data)
waveform, sample_rate = torchaudio.load(
uri=audio_buffer,
normalize=True,
channels_first=True
)
result = await audio_stt(waveform, sample_rate, language)
return result
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Audio processing failed: {str(e)}"
)
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)) -> HTTPAuthorizationCredentials:
"""Verify Bearer Token authentication"""
if credentials.credentials != API_TOKEN:
raise HTTPException(
status_code=401,
detail="Invalid authentication token",
headers={"WWW-Authenticate": "Bearer"}
)
return credentials
@app.post("/v1/audio/transcriptions")
async def transcribe_audio(
file: UploadFile = File(...),
model: str = "FunAudioLLM/SenseVoiceSmall",
language: str = "auto",
token: HTTPAuthorizationCredentials = Depends(verify_token)
) -> Dict[str, Union[str, int, float]]:
"""Audio transcription endpoint.
Args:
file: Audio file (supports mp3, wav, flac, ogg, m4a)
model: Model name
language: Language code
token: Authentication token
Returns:
Dict containing transcription result and metadata
"""
start_time = time.time()
try:
# Check the file format
if not file.filename.lower().endswith((".mp3", ".wav", ".flac", ".ogg", ".m4a")):
return {
"text": "",
"error_code": 400,
"error_msg": "ไธๆ”ฏๆŒ็š„้Ÿณ้ข‘ๆ ผๅผ",
"process_time": time.time() - start_time
}
# Check the model
if model != "FunAudioLLM/SenseVoiceSmall":
return {
"text": "",
"error_code": 400,
"error_msg": "ไธๆ”ฏๆŒ็š„ๆจกๅž‹",
"process_time": time.time() - start_time
}
# Check the language
if language not in ["auto", "zh", "en", "yue", "ja", "ko", "nospeech"]:
return {
"text": "",
"error_code": 400,
"error_msg": "ไธๆ”ฏๆŒ็š„่ฏญ่จ€",
"process_time": time.time() - start_time
}
# STT
content = await file.read()
text = await process_audio(content, language)
return {
"text": text,
"error_code": 0,
"error_msg": "",
"process_time": time.time() - start_time
}
except Exception as e:
return {
"text": "",
"error_code": 500,
"error_msg": str(e),
"process_time": time.time() - start_time
}
def transcribe_audio_gradio(audio: Optional[Tuple[int, np.ndarray]], language: str = "auto") -> str:
"""Gradio interface for audio transcription"""
try:
if audio is None:
return "Please upload an audio file"
# Extract audio data
sample_rate, input_wav = audio
# Normalize audio
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
# Model Inference
input_wav = torch.from_numpy(input_wav)
result = asyncio.run(audio_stt(input_wav, sample_rate, language))
return result
except Exception as e:
return f"Processing failed: {str(e)}"
# Create Gradio interface with localized labels
demo = gr.Interface(
fn=transcribe_audio_gradio,
inputs=[
gr.Audio(
sources=["upload", "microphone"],
type="numpy",
label="Upload audio or record from microphone"
),
gr.Dropdown(
choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
value="auto",
label="Select Language"
)
],
outputs=gr.Textbox(label="Recognition Result"),
title="SenseVoice Speech Recognition",
description="Multi-language speech transcription service supporting Chinese, English, Cantonese, Japanese, and Korean",
examples=[
["examples/zh.mp3", "zh"],
["examples/en.mp3", "en"],
]
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
# Custom Swagger UI redirect
@app.get("/docs", include_in_schema=False)
async def custom_swagger_ui_html():
return HTMLResponse("""
<!DOCTYPE html>
<html>
<head>
<title>SenseVoice API Documentation</title>
<meta http-equiv="refresh" content="0;url=/docs/" />
</head>
<body>
<p>Redirecting to API documentation...</p>
</body>
</html>
""")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)