Mastouri
Updated XGBoost model with TF-IDF vectorizer
f424ca3
raw
history blame
2.91 kB
from datasets import load_dataset
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.metrics import hamming_loss, f1_score, classification_report
import xgboost as xgb
from joblib import dump, load
# Step 1: Load the Dataset Repository
dataset = load_dataset("meriemm6/commit-classification-dataset", data_files={"train": "training.csv", "validation": "validation.csv"})
# Convert the training and validation splits to pandas DataFrames
train_data = dataset["train"].to_pandas()
validation_data = dataset["validation"].to_pandas()
# Step 2: Clean and Process the Data
# Fill missing values in the 'Message' column with "unknown"
train_data['Message'] = train_data['Message'].fillna("unknown")
validation_data['Message'] = validation_data['Message'].fillna("unknown")
# Fill missing values in the 'Ground truth' column with "maintenance/other"
train_data['Ground truth'] = train_data['Ground truth'].fillna("maintenance/other")
validation_data['Ground truth'] = validation_data['Ground truth'].fillna("maintenance/other")
# Split the 'Ground truth' column into lists of labels
train_data['Ground truth'] = train_data['Ground truth'].apply(lambda x: x.split(', '))
validation_data['Ground truth'] = validation_data['Ground truth'].apply(lambda x: x.split(', '))
# Encode the labels
mlb = MultiLabelBinarizer()
y_train_encoded = mlb.fit_transform(train_data['Ground truth'])
y_val_encoded = mlb.transform(validation_data['Ground truth'])
# Step 3: TF-IDF Vectorization (Increased Features)
tfidf_vectorizer = TfidfVectorizer(max_features=10000, stop_words="english")
X_train_tfidf = tfidf_vectorizer.fit_transform(train_data['Message'])
X_val_tfidf = tfidf_vectorizer.transform(validation_data['Message'])
# Save the TF-IDF vectorizer
dump(tfidf_vectorizer, "tfidf_vectorizer_xgboost.joblib")
# Step 4: Add Class Weighting
label_counts = y_train_encoded.sum(axis=0)
scale_pos_weight = (len(y_train_encoded) - label_counts) / label_counts
# Step 5: Train XGBoost Models with Class Weighting and Dynamic Parameters
models = []
for i in range(y_train_encoded.shape[1]):
model = xgb.XGBClassifier(
objective="binary:logistic",
use_label_encoder=False,
eval_metric="logloss",
scale_pos_weight=scale_pos_weight[i], # Class weights
max_depth=6, # Reduced to prevent overfitting
learning_rate=0.03, # Lower learning rate for better generalization
n_estimators=300, # Increased estimators for better performance
subsample=0.8,
colsample_bytree=0.8,
min_child_weight=1 # Prevents overfitting on small datasets
)
model.fit(X_train_tfidf, y_train_encoded[:, i])
models.append(model)
# Save the models
for idx, model in enumerate(models):
dump(model, f"xgboost_model_label_{idx}.joblib")