merve's picture
merve HF staff
Create app.py
4723159 verified
raw
history blame
3.18 kB
import spaces
from transformers import Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForZeroShotObjectDetection
import torch
import gradio as gr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
owl_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
owl_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)
@spaces.GPU
def infer(img, text_queries, score_threshold, model):
if model == "dino":
queries=""
for query in text_queries:
queries += f"{query}. "
width, height = img.shape[:2]
target_sizes=[(width, height)]
inputs = dino_processor(text=queries, images=img, return_tensors="pt").to(device)
with torch.no_grad():
outputs = dino_model(**inputs)
outputs.logits = outputs.logits.cpu()
outputs.pred_boxes = outputs.pred_boxes.cpu()
results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids,
box_threshold=score_threshold,
target_sizes=target_sizes)
elif model == "owl":
size = max(img.shape[:2])
target_sizes = torch.Tensor([[size, size]])
inputs = owl_processor(text=text_queries, images=img, return_tensors="pt").to(device)
with torch.no_grad():
outputs = owl_model(**inputs)
outputs.logits = outputs.logits.cpu()
outputs.pred_boxes = outputs.pred_boxes.cpu()
results = owl_processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
result_labels = []
for box, score, label in zip(boxes, scores, labels):
box = [int(i) for i in box.tolist()]
if score < score_threshold:
continue
if model == "owl":
label = text_queries[label.cpu().item()]
result_labels.append((box, label))
return result_labels
def query_image(img, text_queries, owl_threshold, dino_threshold):
text_queries = text_queries
text_queries = text_queries.split(",")
owl_output = infer(img, text_queries, owl_threshold, "owl")
dino_output = infer(img, text_queries, owl_threshold, "dino")
return (img, owl_output), (img, dino_output)
owl_threshold = gr.Slider(0, 1, value=0.16, label="OWL Threshold")
dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold")
owl_output = gr.AnnotatedImage(label="OWL Output")
dino_output = gr.AnnotatedImage(label="Grounding DINO Output")
demo = gr.Interface(
query_image,
inputs=[gr.Image(label="Input Image"), gr.Textbox("Candidate Labels"), owl_threshold, dino_threshold],
outputs=[owl_output, dino_output],
title="Zero-Shot Object Detection with OWLv2",
examples=[["./bee.jpg", "bee, flower", 0.16, 0.12]]
)
demo.launch(debug=True)