File size: 5,263 Bytes
b4e5268
8f64959
55a8b20
dd507bb
4f4aca6
b4e5268
c6bf6d7
 
 
 
07c1c70
c6bf6d7
 
 
 
 
 
 
 
 
 
 
 
 
07c1c70
c6bf6d7
 
 
6a7d03a
07c1c70
c6bf6d7
1fe0c9e
6a7d03a
07c1c70
b4c9e55
 
b956157
b4e5268
 
b4c9e55
c6bf6d7
 
 
b4e5268
 
b4c9e55
b4e5268
 
 
c6bf6d7
 
1fe0c9e
b4e5268
0000cad
4f4aca6
b4c9e55
 
 
b4e5268
07c1c70
b4e5268
 
 
 
 
07c1c70
b4c9e55
 
07c1c70
b4e5268
b4c9e55
b4e5268
 
 
 
6812dc5
07c1c70
d0f636a
3e67ebc
07c1c70
d0f636a
 
 
3e67ebc
07c1c70
c6bf6d7
 
 
07c1c70
c6bf6d7
 
07c1c70
c6bf6d7
07c1c70
c6bf6d7
 
 
 
 
0eec04d
 
 
c6bf6d7
 
 
 
07c1c70
0eec04d
 
c6bf6d7
07c1c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e575254
c6bf6d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, RetrievalQA
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import json

import gspread
from oauth2client.service_account import ServiceAccountCredentials
import json

# Load Google service account credentials from Hugging Face secrets
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"]

# Google Sheets setup
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope)
client = gspread.authorize(creds)
sheet = client.open("users feedback").sheet1  # Replace with your Google Sheet name
# Fonction pour enregistrer les retours utilisateur dans Google Sheets
def save_feedback(user_input, bot_response, rating, comment):
    feedback = [user_input, bot_response, rating, comment]
    sheet.append_row(feedback)

# Connexion API Hugging Face
from huggingface_hub import login
login(token=st.secrets["HF_TOKEN"])

# Initialiser les composants LangChain
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True)
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1})

prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH.
        Analyse carefully the context and provide a direct answer based on the context. If the user says Bonjour or Hello, your only answer will be: Hi! comment puis-je vous aider?
Answer in french only
        
{context}
Vous devez répondre aux questions en français.

### QUESTION:
{question}
[/INST]
Answer in french only
 Vous devez répondre aux questions en français.
"""

repo_id = "mistralai/Mistral-7B-Instruct-v0.3"

mistral_llm = HuggingFaceEndpoint(
    repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)

# Créer le prompt à partir du modèle de prompt
prompt = PromptTemplate(
    input_variables=["question"],
    template=prompt_template,
)

# Créer la chaîne LLM
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)

# Créer la chaîne RetrievalQA
qa = RetrievalQA.from_chain_type(
    llm=mistral_llm,
    chain_type="stuff",
    retriever=retriever,
    chain_type_kwargs={"prompt": prompt},
)

# Interface Streamlit avec une esthétique améliorée
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")

# Définir la fonction pour gérer l'entrée utilisateur et afficher la réponse du chatbot
def chatbot_response(user_input):
    response = qa.run(user_input)
    return response

# Créer des colonnes pour les logos
col1, col2, col3 = st.columns([2, 3, 2])

with col1:
    st.image("Design 3_22.png", width=150, use_column_width=True)  # Ajustez le chemin et la taille de l'image selon vos besoins

with col3:
    st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True)  # Ajustez le chemin et la taille de l'image selon vos besoins

# Composants Streamlit
st.markdown("""
    <style>
    .centered-text {
        text-align: center;
    }
    .centered-orange-text {
        text-align: center;
        color: darkorange;
    }
    </style>
    """, unsafe_allow_html=True)

# Utiliser les classes CSS pour styliser le texte
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖</h3>', unsafe_allow_html=True)
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique"</p>', unsafe_allow_html=True)

# Interface utilisateur avec formulaire
with st.form(key='feedback_form'):
    user_input = st.text_input("You:")
    submit_button = st.form_submit_button("Ask 📨")

    if submit_button:
        if user_input.strip() != "":
            bot_response = chatbot_response(user_input)
            st.markdown("### Bot:")
            st.text_area("", value=bot_response, height=600)

            # Formulaire de retour d'information
            st.markdown("### Rate the response:")
            rating = st.slider("Select a rating:", min_value=1, max_value=5, value=1)

            st.markdown("### Leave a comment:")
            comment = st.text_area("")

            # Soumettre les retours d'information
            if st.form_submit_button("Submit Feedback"):
                if comment.strip() and rating:
                    save_feedback(user_input, bot_response, rating, comment)
                    st.success("Thank you for your feedback!")
                else:
                    st.warning("⚠️ Please provide a comment and a rating.")

# Citation motivante en bas de page
st.markdown("---")
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")