File size: 5,145 Bytes
b4e5268
8f64959
b4c9e55
55a8b20
dd507bb
4f4aca6
b4e5268
b4c9e55
b321ba9
b4c9e55
 
 
 
6a7d03a
b4c9e55
1fe0c9e
6a7d03a
b4c9e55
 
 
 
 
b956157
b4c9e55
b4e5268
 
b4c9e55
 
 
1fe0c9e
b4e5268
 
b4c9e55
b4e5268
 
 
b4c9e55
47025c6
1fe0c9e
b4e5268
b4c9e55
0000cad
4f4aca6
b4c9e55
 
 
b4e5268
b4c9e55
b4e5268
 
 
 
 
b4c9e55
 
 
 
 
b4e5268
b4c9e55
b4e5268
 
 
 
6812dc5
b4c9e55
d0f636a
3e67ebc
b4c9e55
d0f636a
 
 
3e67ebc
b4c9e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f636a
 
3e67ebc
d0f636a
 
3e67ebc
d0f636a
 
3e67ebc
b4c9e55
d0f636a
 
b4c9e55
 
d0f636a
b4c9e55
d0f636a
 
 
 
 
 
3e67ebc
b4c9e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e575254
 
 
b4c9e55
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import streamlit as st
import pandas as pd
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from huggingface_hub import login
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA

# Authenticate with Hugging Face
login(token=st.secrets["HF_TOKEN"])

# Load FAISS index
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True)

# Set up retriever
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1})

# Prompt template for the LLM
prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH.
        Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello, your only answer will be Hi! comment puis-je vous aider?
Answer in French only.

{context}
Vous devez répondre aux questions en français.

### QUESTION:
{question}
[/INST]
Answer in French only.
Vous devez répondre aux questions en français.
"""

# Set up the LLM from Hugging Face
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"

mistral_llm = HuggingFaceEndpoint(
    repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)

# Create prompt from prompt template
prompt = PromptTemplate(
    input_variables=["question"],
    template=prompt_template,
)

# Create LLM chain
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)

# Set up RetrievalQA chain
retriever.search_kwargs = {'k': 1}
qa = RetrievalQA.from_chain_type(
    llm=mistral_llm,
    chain_type="stuff",
    retriever=retriever,
    chain_type_kwargs={"prompt": prompt},
)

# Streamlit interface setup
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")

# Function to handle user input and display chatbot response
def chatbot_response(user_input):
    response = qa.run(user_input)
    return response

# Function to save user feedback
def save_feedback(user_input, bot_response, rating, comment):
    feedback = {
        "user_input": user_input,
        "bot_response": bot_response,
        "rating": rating,
        "comment": comment
    }
    
    # Check if the feedback file exists
    feedback_file = "feedback.csv"
    if os.path.exists(feedback_file):
        # Load existing feedback and append new feedback
        feedback_df = pd.read_csv(feedback_file)
        feedback_df = feedback_df.append(feedback, ignore_index=True)
    else:
        # Create a new dataframe for the feedback
        feedback_df = pd.DataFrame([feedback])
    
    # Save feedback to CSV
    feedback_df.to_csv(feedback_file, index=False)

# Create columns for logos
col1, col2, col3 = st.columns([2, 3, 2])

with col1:
    st.image("Design 3_22.png", width=150, use_column_width=True)

with col3:
    st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True)

# Adding centered header and subtitle
st.markdown("""
    <style>
    .centered-text { text-align: center; }
    .centered-orange-text { text-align: center; color: darkorange; }
    </style>
""", unsafe_allow_html=True)
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)

# Input and button for user interaction
user_input = st.text_input("You:", "")
submit_button = st.button("Ask 📨")

# Handle user input and display response
if submit_button and user_input.strip():
    bot_response = chatbot_response(user_input)
    st.markdown("### Bot:")
    st.text_area("", value=bot_response, height=300)
    
    # Star rating system
    st.markdown("### How would you rate the response?")
    rating = st.slider("Rate from 1 star to 5 stars", min_value=1, max_value=5, value=3)
    
    # Comment section
    comment = st.text_area("Any comments or suggestions for improvement?", "")
    
    # Save feedback when the user submits a rating and comment
    if st.button("Submit Feedback"):
        save_feedback(user_input, bot_response, rating, comment)
        st.success("Thank you for your feedback!")

# Motivational quote at the bottom
st.markdown("---")
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")

# Section for the developer to review feedback
if st.checkbox("Show Feedback (Developer Only)"):
    if os.path.exists("feedback.csv"):
        feedback_df = pd.read_csv("feedback.csv")
        st.dataframe(feedback_df)
    else:
        st.warning("No feedback available yet.")