Spaces:
Sleeping
Sleeping
File size: 4,041 Bytes
b4e5268 8f64959 b4c9e55 55a8b20 dd507bb 4f4aca6 b4e5268 b4c9e55 b321ba9 b4c9e55 6a7d03a b4c9e55 1fe0c9e 6a7d03a b4c9e55 b956157 b4c9e55 b4e5268 b4c9e55 1fe0c9e b4e5268 b4c9e55 b4e5268 b4c9e55 47025c6 1fe0c9e b4e5268 b4c9e55 0000cad 4f4aca6 b4c9e55 b4e5268 b4c9e55 b4e5268 b4c9e55 b4e5268 b4c9e55 b4e5268 6812dc5 b4c9e55 d0f636a 3e67ebc b4c9e55 d0f636a 3e67ebc 0d51287 cde888e 0d51287 58b5433 0d51287 b4c9e55 0d51287 b4c9e55 0d51287 e575254 0d51287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
import streamlit as st
import pandas as pd
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from huggingface_hub import login
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
# Authenticate with Hugging Face
login(token=st.secrets["HF_TOKEN"])
# Load FAISS index
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True)
# Set up retriever
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1})
# Prompt template for the LLM
prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH.
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello, your only answer will be Hi! comment puis-je vous aider?
Answer in French only.
{context}
Vous devez répondre aux questions en français.
### QUESTION:
{question}
[/INST]
Answer in French only.
Vous devez répondre aux questions en français.
"""
# Set up the LLM from Hugging Face
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
mistral_llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)
# Create prompt from prompt template
prompt = PromptTemplate(
input_variables=["question"],
template=prompt_template,
)
# Create LLM chain
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
# Set up RetrievalQA chain
retriever.search_kwargs = {'k': 1}
qa = RetrievalQA.from_chain_type(
llm=mistral_llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt},
)
# Streamlit interface setup
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
# Function to handle user input and display chatbot response
def chatbot_response(user_input):
response = qa.run(user_input)
return response
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import json
# Load Google service account credentials from Hugging Face secrets
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"]
# Google Sheets setup
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope)
client = gspread.authorize(creds)
sheet = client.open("users feedback").sheet1 # Replace with your Google Sheet name
# Function to save user feedback to Google Sheets
def save_feedback(user_input, bot_response, rating, comment):
feedback = [user_input, bot_response, rating, comment]
sheet.append_row(feedback)
# Streamlit app layout
st.markdown("<h3 style='text-align: center;'>🤖 Chatbot Feedback 🤖</h3>", unsafe_allow_html=True)
user_input = st.text_input("You:")
bot_response = "This is a bot response." # Replace this with your chatbot's response logic
st.markdown("### Rate the response:")
rating = st.selectbox("", [1, 2, 3, 4, 5])
st.markdown("### Leave a comment:")
comment = st.text_area("")
if st.button("Submit"):
if user_input.strip() and comment.strip():
save_feedback(user_input, bot_response, rating, comment)
st.success("Thank you for your feedback!")
else:
st.warning("Please provide both input and comment.")
st.markdown("---")
st.markdown("Collaboration is the key to success. Each question finds its answer, each challenge becomes an opportunity.")
|