File size: 4,872 Bytes
b4e5268
8f64959
55a8b20
dd507bb
4f4aca6
b4e5268
c6bf6d7
 
 
 
07c1c70
f2450be
c6bf6d7
 
f2450be
c6bf6d7
 
 
 
f2450be
 
cd35be5
f2450be
c6bf6d7
f2450be
 
 
 
c6bf6d7
1fe0c9e
6a7d03a
f2450be
b4c9e55
 
b956157
b4e5268
 
b4c9e55
c6bf6d7
 
 
b4e5268
 
 
 
 
c6bf6d7
 
1fe0c9e
b4e5268
0000cad
4f4aca6
b4c9e55
 
 
b4e5268
f2450be
b4e5268
 
 
 
 
f2450be
b4c9e55
 
f2450be
b4e5268
b4c9e55
b4e5268
 
 
 
6812dc5
f2450be
d0f636a
3e67ebc
f2450be
d0f636a
 
 
3e67ebc
f2450be
c6bf6d7
 
 
f2450be
c6bf6d7
 
f2450be
c6bf6d7
f2450be
c6bf6d7
 
 
 
 
0eec04d
 
 
c6bf6d7
 
 
 
0eec04d
 
c6bf6d7
f2450be
07c1c70
 
 
 
 
 
 
 
 
 
f2450be
07c1c70
 
 
 
 
 
f2450be
 
 
 
07c1c70
 
f2450be
07c1c70
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, RetrievalQA
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import json

# Load Google service account credentials from Hugging Face secrets
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"]

# Google Sheets setup
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope)
client = gspread.authorize(creds)
sheet_id = "1Jf1k7Q71ihsxBf-XQYyucamMy14q7IjhUDlU8ZzR_Nc"  # Replace with your Sheet ID
sheet = client.open_by_key(sheet_id).sheet1  # Use the sheet ID to open the sheet

# Function to save feedback to Google Sheets
def save_feedback(user_input, bot_response, rating, comment):
    feedback = [user_input, bot_response, rating, comment]
    sheet.append_row(feedback)

# Connect to Hugging Face API
from huggingface_hub import login
login(token=st.secrets["HF_TOKEN"])

# Initialize LangChain components
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True)
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1})

prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH.
        Analyse carefully the context and provide a direct answer based on the context. If the user says Bonjour or Hello, your only answer will be: Hi! comment puis-je vous aider?
Answer in french only
        
{context}
Vous devez répondre aux questions en français.
### QUESTION:
{question}
[/INST]
Answer in french only
 Vous devez répondre aux questions en français.
"""

repo_id = "mistralai/Mistral-7B-Instruct-v0.3"

mistral_llm = HuggingFaceEndpoint(
    repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)

# Create prompt from prompt template
prompt = PromptTemplate(
    input_variables=["question"],
    template=prompt_template,
)

# Create LLM chain
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)

# Create RetrievalQA chain
qa = RetrievalQA.from_chain_type(
    llm=mistral_llm,
    chain_type="stuff",
    retriever=retriever,
    chain_type_kwargs={"prompt": prompt},
)

# Streamlit interface setup
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")

# Function to handle user input and display chatbot response
def chatbot_response(user_input):
    response = qa.run(user_input)
    return response

# Create columns for logos
col1, col2, col3 = st.columns([2, 3, 2])

with col1:
    st.image("Design 3_22.png", width=150, use_column_width=True)  # Adjust image path and size as needed

with col3:
    st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True)  # Adjust image path and size as needed

# Streamlit components
st.markdown("""
    <style>
    .centered-text {
        text-align: center;
    }
    .centered-orange-text {
        text-align: center;
        color: darkorange;
    }
    </style>
    """, unsafe_allow_html=True)

st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖</h3>', unsafe_allow_html=True)
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique"</p>', unsafe_allow_html=True)

# Streamlit form for user interaction
with st.form(key='feedback_form'):
    user_input = st.text_input("You:")
    submit_button = st.form_submit_button("Ask 📨")

    if submit_button:
        if user_input.strip() != "":
            bot_response = chatbot_response(user_input)
            st.markdown("### Bot:")
            st.text_area("", value=bot_response, height=600)

            # Form for feedback
            st.markdown("### Rate the response:")
            rating = st.slider("Select a rating:", min_value=1, max_value=5, value=1)

            st.markdown("### Leave a comment:")
            comment = st.text_area("")

            # Submit feedback
            feedback_submit_button = st.form_submit_button("Submit Feedback")

            if feedback_submit_button:
                if comment.strip() and rating:
                    save_feedback(user_input, bot_response, rating, comment)
                    st.success("Thank you for your feedback!")
                else:
                    st.warning("⚠️ Please provide a comment and a rating.")