Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import pandas as pd | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from huggingface_hub import login | |
from langchain_community.document_loaders import TextLoader | |
from langchain_text_splitters import CharacterTextSplitter | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.chains import RetrievalQA | |
# Authenticate with Hugging Face | |
login(token=st.secrets["HF_TOKEN"]) | |
# Load FAISS index | |
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True) | |
# Set up retriever | |
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1}) | |
# Prompt template for the LLM | |
prompt_template = """ | |
### [INST] | |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH. | |
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello, your only answer will be Hi! comment puis-je vous aider? | |
Answer in French only. | |
{context} | |
Vous devez répondre aux questions en français. | |
### QUESTION: | |
{question} | |
[/INST] | |
Answer in French only. | |
Vous devez répondre aux questions en français. | |
""" | |
# Set up the LLM from Hugging Face | |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
mistral_llm = HuggingFaceEndpoint( | |
repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"] | |
) | |
# Create prompt from prompt template | |
prompt = PromptTemplate( | |
input_variables=["question"], | |
template=prompt_template, | |
) | |
# Create LLM chain | |
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) | |
# Set up RetrievalQA chain | |
retriever.search_kwargs = {'k': 1} | |
qa = RetrievalQA.from_chain_type( | |
llm=mistral_llm, | |
chain_type="stuff", | |
retriever=retriever, | |
chain_type_kwargs={"prompt": prompt}, | |
) | |
# Streamlit interface setup | |
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") | |
# Function to handle user input and display chatbot response | |
def chatbot_response(user_input): | |
response = qa.run(user_input) | |
return response | |
import gspread | |
from oauth2client.service_account import ServiceAccountCredentials | |
import json | |
# Load Google service account credentials from Hugging Face secrets | |
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"] | |
# Google Sheets setup | |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"] | |
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON) | |
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope) | |
client = gspread.authorize(creds) | |
sheet = client.open("users feedback").sheet1 # Replace with your Google Sheet name | |
# Function to save user feedback to Google Sheets | |
def save_feedback(user_input, bot_response, rating, comment): | |
feedback = [user_input, bot_response, rating, comment] | |
sheet.append_row(feedback) | |
# Streamlit app layout | |
st.markdown("<h3 style='text-align: center;'>🤖 Chatbot Feedback 🤖</h3>", unsafe_allow_html=True) | |
user_input = st.text_input("You:") | |
bot_response = "This is a bot response." # Replace this with your chatbot's response logic | |
st.markdown("### Rate the response:") | |
rating = st.selectbox("", [1, 2, 3, 4, 5]) | |
st.markdown("### Leave a comment:") | |
comment = st.text_area("") | |
if st.button("Submit"): | |
if user_input.strip() and comment.strip(): | |
save_feedback(user_input, bot_response, rating, comment) | |
st.success("Thank you for your feedback!") | |
else: | |
st.warning("Please provide both input and comment.") | |
st.markdown("---") | |
st.markdown("Collaboration is the key to success. Each question finds its answer, each challenge becomes an opportunity.") | |