Spaces:
Running
Running
import os | |
os.system("git clone https://github.com/google-research/frame-interpolation") | |
import sys | |
sys.path.append("frame-interpolation") | |
import numpy as np | |
import tensorflow as tf | |
import mediapy | |
from PIL import Image | |
from eval import interpolator, util | |
import tensorflow as tf | |
import gradio as gr | |
_UINT8_MAX_F = float(np.iinfo(np.uint8).max) | |
from huggingface_hub import snapshot_download | |
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") | |
interpolator = interpolator.Interpolator(model, None) | |
batch_dt = np.full(shape=(1,), fill_value=0.5, dtype=np.float32) | |
def predict(frame1, frame2, times_to_interpolate): | |
img1 = frame1 | |
img2 = frame2 | |
if not img1.size == img2.size: | |
img1 = img1.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1]))) | |
img2 = img2.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1]))) | |
frame1 = 'new_frame1.png' | |
frame2 = 'new_frame2.png' | |
img1.save(frame1) | |
img2.save(frame2) | |
input_frames = [str(frame1), str(frame2)] | |
frames = list( | |
util.interpolate_recursively_from_files( | |
input_frames, times_to_interpolate, interpolator)) | |
ffmpeg_path = util.get_ffmpeg_path() | |
mediapy.set_ffmpeg(ffmpeg_path) | |
out_path = "out.mp4" | |
mediapy.write_video(str(out_path), frames, fps=30) | |
return out_path | |
gr.Interface(predict,[gr.inputs.Image(type='pil'),gr.inputs.Image(type='pil'),gr.inputs.Slider(minimum=2,maximum=5,step=1)],"playable_video").launch(enable_queue=True) |