cabasus / funcs /plot_func.py
arcan3
mods
80be153
raw
history blame
4.32 kB
import json
import matplotlib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
matplotlib.use('Agg')
plt.style.use('ggplot')
def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
# Concatenate the slices and create a new timestamp series with 20ms intervals
timestamps = []
sensor_data = []
slice_item = []
temp_end = 0
for slice_count, slice_dict in enumerate(slices):
start_timestamp = slice_dict["timestamp"]
slice_length = len(slice_dict[sensor])
slice_timestamps = [start_timestamp + 20 * i for i in range(temp_end, slice_length + temp_end)]
timestamps.extend(slice_timestamps)
sensor_data.extend(slice_dict[sensor])
temp_end += slice_length
slice_item.extend([slice_count+1]*len(slice_timestamps))
# Create a DataFrame with the sensor data
data = pd.DataFrame({sensor: sensor_data, 'slice selection': slice_item, 'time': timestamps})
# Plot the sensor data
fig, ax = plt.subplots(figsize=(12, 6))
ax = plt.plot(data['time'].to_list(), data[sensor].to_list())
df_temp = data[data['slice selection'] == int(slice_select)].reset_index()
y = [np.NaN]*((int(slice_select)-1)*len(df_temp[sensor].to_list())) + df_temp[sensor].to_list() + [np.NaN]*((len(slices) - int(slice_select))*len(df_temp[sensor].to_list()))
x = data['time'].to_list()
ax = plt.plot(x, y, '-')
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
fig1, ax1 = plt.subplots(figsize=(12, 6))
ax1 = plt.plot(df_temp['time'].to_list(), df_temp[sensor].to_list())
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
return fig, fig1, None
def plot_overlay_data_from_json(json_file, sensors, use_precise_timestamp=False):
# Read the JSON file
with open(json_file, "r") as f:
slices = json.load(f)
# Set up the colormap
cmap = plt.get_cmap('viridis')
# Create subplots for each sensor
fig, axs = plt.subplots(len(sensors), 1, figsize=(12, 2 * len(sensors)), sharex=True)
for idx, sensor in enumerate(sensors):
# Plot the overlay of the slices
for slice_idx, slice_dict in enumerate(slices):
slice_length = len(slice_dict[sensor])
# Create timestamp array starting from 0 for each slice
slice_timestamps = [20 * i for i in range(slice_length)]
sensor_data = slice_dict[sensor]
data = pd.DataFrame({sensor: sensor_data}, index=slice_timestamps)
color = cmap(slice_idx / len(slices))
axs[idx].plot(data[sensor], color=color, label=f'Slice {slice_idx + 1}')
axs[idx].set_ylabel(sensor)
axs[-1].set_xlabel("Timestamp")
axs[0].legend()
return fig
def plot_slices(original_signal, imputed_signal, precise_slice_points, normal_slice_points, sample_rate, first_timestamp):
plt.figure(figsize=(12, 6))
plt.plot(imputed_signal.index, imputed_signal, label="Imputed Signal")
# Find the missing values and the predicted values
missing_value_indices = original_signal.isna()
missing_values = original_signal.loc[missing_value_indices]
predicted_values = imputed_signal.loc[missing_value_indices]
# Plot the original missing values and the predicted values as separate scatter plots
plt.scatter(missing_values.index, missing_values, color='r', marker='x', label='Original Missing Values')
plt.scatter(predicted_values.index, predicted_values, color='r', marker='o', label='Predicted Values')
for index in precise_slice_points:
plt.axvline(x=first_timestamp + (index), color='r', linestyle='--', label='Precise Slice Points' if index == precise_slice_points[0] else "")
for index in normal_slice_points:
plt.axvline(x=first_timestamp + (index), color='g', linestyle='-', label='Normal Slice Points' if index == normal_slice_points[0] else "")
plt.legend()
plt.xlabel("Time (s)")
plt.ylabel("Signal Amplitude")
plt.title("Imputed Signal and Slice Points")
return True