File size: 2,775 Bytes
f6890a5
6807ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74f2a9
ec9c39a
dbf76bc
6807ea3
 
 
e8c3b4b
 
6807ea3
 
e8c3b4b
6807ea3
 
 
 
 
e8c3b4b
 
6807ea3
e8c3b4b
6807ea3
 
 
 
 
 
 
e8c3b4b
 
6807ea3
 
 
 
 
 
 
 
 
9dd8848
 
e8c3b4b
 
 
9dd8848
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from datetime import datetime
from src.deepeval.base_task import BaseTask
from deepeval.test_case import LLMTestCase
from typing import Any
from deepeval.metrics import GEval
from deepeval.test_case import LLMTestCaseParams

class TruthfulnessTask(BaseTask):
    def __init__(self, model_name: str):
        super().__init__("metunlp/sosyoloji_truthfulness", model_name=model_name)

        self.correctness_metric = GEval(
            name="Truthfulness",
            criteria="Determine whether the actual output is factually correct based on the expected output.",
            evaluation_steps=[
                "Check whether the facts in 'actual output' contradict any facts in 'expected output'",
                "Heavily penalize omission of detail",
                "Vague language, or contradicting OPINIONS, are OK"
            ],
            model="gpt-4o-mini",
            evaluation_params=[
                LLMTestCaseParams.INPUT,
                LLMTestCaseParams.ACTUAL_OUTPUT,
                LLMTestCaseParams.EXPECTED_OUTPUT
            ],
        )

    def load_dataset_from_hf(self):
        dataset = super().load_dataset_lmjudge_from_hf()
        return dataset

    def evaluate(self) -> dict[str, Any]:
        results = []
        total_model_time = 0
        total_judge_time = 0

        for i, row in enumerate(self.dataset):
            start_model = datetime.now()
            question = row["question"]
            expected_output = row["answer"]

            prompt = f"Soru: {question}\nCevap:"
            actual_output = self.generate_response(prompt, max_new_tokens=100)
            end_model = datetime.now()
            total_model_time += (end_model - start_model).total_seconds()

            start_judge = datetime.now()
            test_case = LLMTestCase(
                input=question,
                actual_output=actual_output,
                expected_output=expected_output
            )

            self.correctness_metric.measure(test_case)
            end_judge = datetime.now()
            total_judge_time += (end_judge - start_judge).total_seconds()

            results.append({
                "index": i,
                "score": self.correctness_metric.score,
                "reason": self.correctness_metric.reason,
                "input": question,
                "expected_output": expected_output,
                "actual_output": actual_output
            })
            #Sum all scores in results and divide to nubmer of results
            overallScore = (sum([result["score"] for result in results]) / len(results)) * 100 
        
        print(f"Total model time: {total_model_time} seconds")
        print(f"Total judge time: {total_judge_time} seconds")
        return {"results": overallScore}