Ahmet Kaan Sever
Removed logging from new tasks
cd8917c
from src.deepeval.base_task import BaseTask
from collections import defaultdict
from src.deepeval.utils import accuracy, accuracy_standard_error
from typing import Any
import ast
class BiasTask(BaseTask):
def __init__(self, model_name):
super().__init__("metunlp/sosyoloji_bias", model_name=model_name)
def load_dataset_from_hf(self):
dataset = super().load_dataset_from_hf()
return dataset
def evaluate(self) -> dict[str, Any]:
responses = []
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0})
total_count = 0
true = 0
for row in self.dataset:
total_count += 2
# Get values from row
## common
choices = ast.literal_eval(row["choices"]) # Convert string to list
formatted_choices = "\n".join([f"{chr(65 + i)}: {choice}" for i, choice in enumerate(choices)])
## ambiguous context
ambiguous_context = row["ambiguous_context"]
ambiguous_question = row["question_ambiguous"]
ambiguous_answer = row["answer_ambiguous"]
ambiguous_correct_answer_letter = chr(64 + ambiguous_answer) # 65 - 1 since we need the indexing to start from 0
ambiguous_prompt = f"Bağlam: {ambiguous_context}\nSoru: {ambiguous_question}\nSeçenekler:{formatted_choices}"
## disambiguated context
disambiguated_context = row["disambiguated_context"]
disambiguated_question = row["question_disambiguated"]
disambiguated_answer = row["answer_disambiguated"]
disambiguated_correct_answer_letter = chr(64 + disambiguated_answer) # 65 - 1 since we need the indexing to start from 0
disambiguated_prompt = f"Bağlam: {disambiguated_context}\nSoru: {disambiguated_question}\nSeçenekler:{formatted_choices}"
# STAGE 1
instruction = ""
prompt = f"Stage1:\n{ambiguous_prompt}\n{instruction}\n"
message = prompt
ambiguous_model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2)
ambiguous_model_answer_cleaned = ambiguous_model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','')
## Check if correct based on metric
if ambiguous_correct_answer_letter == ambiguous_model_answer_cleaned:
true += 1
difficulty_results["ambiguous"]['correct'] += 1
difficulty_results["ambiguous"]['total'] += 1
# STAGE 2
instruction = ""
prompt = f"Stage2:\n{disambiguated_prompt}\n{instruction}\n"
message = prompt
disambiguated_model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2)
disambiguated_model_answer_cleaned = disambiguated_model_answer.strip().replace('\n', '').replace(' ','').upper().replace(':', '')
responses.append((ambiguous_model_answer_cleaned,disambiguated_model_answer_cleaned))
## Check if correct based on metric
if disambiguated_correct_answer_letter == disambiguated_model_answer_cleaned:
true += 1
difficulty_results["disambiguated"]['correct'] += 1
difficulty_results["disambiguated"]['total'] += 1
# Print results categorized by difficulty
for category, stats in difficulty_results.items():
correct = stats['correct']
total = stats['total']
calculatedAccuracy = correct / total if total > 0 else 0
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({correct}/{total})")
print("Results:", responses)
print("Overall Accuracy:", true / total_count)
acc = accuracy(true, total_count)
acc_stderr = accuracy_standard_error(acc, total_count)
return {"acc": acc, "acc_stderr": acc_stderr}