Spaces:
Running
on
L4
Running
on
L4
from src.deepeval.base_task import BaseTask | |
from collections import defaultdict | |
from src.deepeval.utils import accuracy, accuracy_standard_error | |
from typing import Any | |
class CommonsenseReasoningTask(BaseTask): | |
def __init__(self, model_name): | |
super().__init__("metunlp/commonsense", model_name=model_name) | |
def load_dataset_from_hf(self): | |
dataset = super().load_dataset_from_hf() | |
return dataset | |
def evaluate(self) -> dict[str, Any]: | |
responses = [] | |
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0}) | |
total_count = 0 | |
true = 0 | |
for row in self.dataset: | |
total_count += 1 | |
# Get values from row | |
label = row["label"] | |
choices=[row["choice1"], row["choice2"]] | |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)]) | |
category = row["difficulty"] | |
answer = row["answer"] | |
text = row["text"] | |
context = row["context"] | |
# Prints for debugging | |
# print(f"Choices: {choices}") | |
# print("Type of choices:", type(choices)) | |
# print("Type of answer:", type(answer)) | |
# Get answer index (starting from 0) | |
if type(answer) == int: | |
answer_index = answer - 1 # 1 or 2 | |
else: | |
answer_index = int(answer) - 1 | |
correct_answer_letter = chr(65 + answer_index) | |
# Get question based on label | |
if label == "effect": | |
question = "Seçeneklerden hangisi verilen önermenin bir sonucu veya etkisi olabilir?" | |
elif label == "cause": | |
question = "Seçeneklerden hangisi verilen önermenin bir neden veya sebebi olabilir?" | |
else: | |
question = "Seçeneklerden hangisi uygun?" # Alternatif | |
# Construct the prompt/message | |
instruction = "" | |
prompt = f"Bağlam:\n{text}\nÖnerme:\n{context}\nSoru:{question}\nSeçenekler:\n{formatted_choices}\n{instruction}\n" | |
message = prompt | |
# Get/format answer of the model | |
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) | |
responses.append(model_answer) | |
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper() | |
# Print answers | |
# print(f"Correct Answer: {correct_answer_letter}") | |
# print(f"Model Answer: {model_answer}") | |
# print(f"Model Answer Cleaned: {model_answer_cleaned}") | |
# Check if correct based on metric | |
if correct_answer_letter == model_answer_cleaned: | |
true += 1 | |
difficulty_results[category]['correct'] += 1 | |
difficulty_results[category]['total'] += 1 | |
# Print results categorized by difficulty | |
for category, stats in difficulty_results.items(): | |
calculatedAccuracy = stats['correct'] / stats['total'] if stats['total'] > 0 else 0 | |
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({stats['correct']}/{stats['total']})") | |
print("Results:", responses) | |
print("Overall Accuracy:", true / total_count) | |
acc = accuracy(true, total_count) | |
acc_stderr = accuracy_standard_error(acc, total_count) | |
return {"acc": acc, "acc_stderr": acc_stderr} | |