model-eval-be / src /deepeval /commonsense_reasoning_task.py
Ahmet Kaan Sever
Removed unnecessary debug prints and timestamps now return seconds.
8a3d32e
from src.deepeval.base_task import BaseTask
from collections import defaultdict
from src.deepeval.utils import accuracy, accuracy_standard_error
from typing import Any
class CommonsenseReasoningTask(BaseTask):
def __init__(self, model_name):
super().__init__("metunlp/commonsense", model_name=model_name)
def load_dataset_from_hf(self):
dataset = super().load_dataset_from_hf()
return dataset
def evaluate(self) -> dict[str, Any]:
responses = []
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0})
total_count = 0
true = 0
for row in self.dataset:
total_count += 1
# Get values from row
label = row["label"]
choices=[row["choice1"], row["choice2"]]
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
category = row["difficulty"]
answer = row["answer"]
text = row["text"]
context = row["context"]
# Prints for debugging
# print(f"Choices: {choices}")
# print("Type of choices:", type(choices))
# print("Type of answer:", type(answer))
# Get answer index (starting from 0)
if type(answer) == int:
answer_index = answer - 1 # 1 or 2
else:
answer_index = int(answer) - 1
correct_answer_letter = chr(65 + answer_index)
# Get question based on label
if label == "effect":
question = "Seçeneklerden hangisi verilen önermenin bir sonucu veya etkisi olabilir?"
elif label == "cause":
question = "Seçeneklerden hangisi verilen önermenin bir neden veya sebebi olabilir?"
else:
question = "Seçeneklerden hangisi uygun?" # Alternatif
# Construct the prompt/message
instruction = ""
prompt = f"Bağlam:\n{text}\nÖnerme:\n{context}\nSoru:{question}\nSeçenekler:\n{formatted_choices}\n{instruction}\n"
message = prompt
# Get/format answer of the model
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2)
responses.append(model_answer)
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper()
# Print answers
# print(f"Correct Answer: {correct_answer_letter}")
# print(f"Model Answer: {model_answer}")
# print(f"Model Answer Cleaned: {model_answer_cleaned}")
# Check if correct based on metric
if correct_answer_letter == model_answer_cleaned:
true += 1
difficulty_results[category]['correct'] += 1
difficulty_results[category]['total'] += 1
# Print results categorized by difficulty
for category, stats in difficulty_results.items():
calculatedAccuracy = stats['correct'] / stats['total'] if stats['total'] > 0 else 0
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({stats['correct']}/{stats['total']})")
print("Results:", responses)
print("Overall Accuracy:", true / total_count)
acc = accuracy(true, total_count)
acc_stderr = accuracy_standard_error(acc, total_count)
return {"acc": acc, "acc_stderr": acc_stderr}