Spaces:
Running
on
L4
Running
on
L4
from src.deepeval.base_task import BaseTask | |
from collections import defaultdict | |
from src.deepeval.utils import accuracy, accuracy_standard_error | |
from typing import Any | |
import ast | |
class ComplexReasoningTask(BaseTask): | |
def __init__(self, model_name): | |
super().__init__("metunlp/complex-ales", model_name=model_name) | |
def load_dataset_from_hf(self): | |
dataset = super().load_dataset_from_hf() | |
return dataset | |
def evaluate(self) -> dict[str, Any]: | |
responses = [] | |
correct_answers = [] | |
total_count = 0 | |
true = 0 | |
for row in self.dataset: | |
total_count += 1 | |
# Get values from row | |
choices = ast.literal_eval(row["choices"]) # Convert string to list | |
narrative = row["narrative"] | |
question = row["question"] | |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)]) | |
correct_answer_letter = row["answer_choice"] | |
correct_answers.append(correct_answer_letter) | |
# Prints for debugging | |
# print(f"Choices: {choices}") | |
# print("Type of choices:", type(choices)) | |
# Construct the prompt/message | |
instruction = "" | |
prompt = f"Soru:\n{narrative}\n{question}\nSeçenekler:\n{formatted_choices}\n{instruction}\n" | |
message = prompt | |
# Get/format answer of the model | |
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) | |
responses.append(model_answer) | |
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','') | |
if correct_answer_letter == model_answer_cleaned: | |
true += 1 | |
# Print answers | |
# print(f"Correct Answer: {correct_answer_letter}") | |
# print(f"Model Answer: {model_answer}") | |
# print(f"Model Answer Cleaned: {model_answer_cleaned}") | |
print("Answers:", correct_answers) | |
print("Results:", responses) | |
print("Overall Accuracy:", true / total_count) | |
acc = accuracy(true, total_count) | |
acc_stderr = accuracy_standard_error(acc, total_count) | |
return {"acc": acc, "acc_stderr": acc_stderr} | |