Spaces:
Running
on
L4
Running
on
L4
from datetime import datetime | |
from src.deepeval.base_task import BaseTask | |
from deepeval.metrics import PromptAlignmentMetric | |
from deepeval.test_case import LLMTestCase | |
from typing import Any | |
class InstructionFollowingTask(BaseTask): | |
def __init__(self, model_name: str): | |
super().__init__("metunlp/instruction_following_tr", model_name=model_name) | |
def load_dataset_from_hf(self): | |
dataset = super().load_dataset_lmjudge_from_hf() | |
return dataset | |
def evaluate(self) -> dict[str, Any]: | |
results = [] | |
total_model_time = 0 | |
total_judge_time = 0 | |
for i, row in enumerate(self.dataset): | |
start_model = datetime.now() | |
input_text = row.get("input", "") | |
instruction_text = row.get("instruction", "") | |
prompt = ( | |
f"Girdi: {input_text}\n" | |
f"Talimat: {instruction_text}\n" | |
f"Çıkıt:" | |
) | |
output = self.generate_response(prompt, max_new_tokens=200) | |
end_model = datetime.now() | |
total_model_time += (end_model - start_model).total_seconds() | |
start_judge = datetime.now() | |
test_case = LLMTestCase( | |
input=input_text, | |
actual_output=output | |
) | |
metric = PromptAlignmentMetric( | |
prompt_instructions=[instruction_text], | |
model="gpt-4o-mini", | |
include_reason=True | |
) | |
metric.measure(test_case) | |
end_judge = datetime.now() | |
total_judge_time += (end_judge - start_judge).total_seconds() | |
results.append({ | |
"index": i, | |
"score": metric.score, | |
"reason": metric.reason, | |
"score_breakdown": metric.score_breakdown, | |
"input": input_text, | |
"instruction": instruction_text, | |
"output": output | |
}) | |
#Sum all scores in results and divide to nubmer of results | |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100 | |
print(f"Total model time: {total_model_time} seconds") | |
print(f"Total judge time: {total_judge_time} seconds") | |
return {"results": overallScore} | |