Spaces:
Running
on
L4
Running
on
L4
from src.deepeval.base_task import BaseTask | |
from collections import defaultdict | |
from src.deepeval.utils import accuracy, accuracy_standard_error | |
from typing import Any | |
import ast | |
class TopicDetectionTask(BaseTask): | |
def __init__(self, model_name): | |
super().__init__("metunlp/topic_detection_tr", model_name=model_name) | |
def load_dataset_from_hf(self): | |
dataset = super().load_dataset_from_hf() | |
return dataset | |
def evaluate(self) -> dict[str, Any]: | |
responses = [] | |
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0}) | |
total_count = 0 | |
true = 0 | |
for row in self.dataset: | |
total_count += 1 | |
# Get values from row | |
choices = ast.literal_eval(row["choices"]) # Convert string to list | |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)]) | |
category = row["level"].lower().replace(' ','') | |
answer = row["answer"] | |
text = row["text"] | |
# Get answer index (starting from 0) | |
if type(answer) == int: | |
answer_index = answer | |
else: | |
answer_index = int(answer) | |
correct_answer_letter = chr(65 + answer_index) | |
# Construct the prompt/message | |
instruction = "Aşağıdaki metni analiz et ve seçeneklerden bu metnin en olası kategorisini belirle. Temaya ve detaylara dikkat ederek metnin ana fikrini göz önünde bulundurarak soruyu cevapla." | |
prompt = f"{instruction}\n\nMetin:\n{text}\nSeçenekler:\n{formatted_choices}\n\n" | |
message = prompt | |
# Get/format answer of the model | |
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) | |
responses.append(model_answer) | |
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','') | |
# Check if correct based on metric | |
if correct_answer_letter == model_answer_cleaned: | |
true += 1 | |
difficulty_results[category]['correct'] += 1 | |
difficulty_results[category]['total'] += 1 | |
# Print results categorized by difficulty | |
for category, stats in difficulty_results.items(): | |
correct = stats['correct'] | |
total = stats['total'] | |
calculatedAccuracy = correct / total if total > 0 else 0 | |
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({correct}/{total})") | |
print("Results:", responses) | |
print("Overall Accuracy:", true / total_count) | |
acc = accuracy(true, total_count) | |
acc_stderr = accuracy_standard_error(acc, total_count) | |
return {"acc": acc, "acc_stderr": acc_stderr} | |