Spaces:
Sleeping
Sleeping
update commonsense reasoning
Browse files
src/deepeval/commonsense_reasoning_task.py
CHANGED
@@ -1,27 +1,47 @@
|
|
1 |
from src.deepeval.base_task import BaseTask
|
|
|
2 |
from src.deepeval.utils import accuracy, accuracy_standard_error
|
3 |
from typing import Any
|
4 |
|
|
|
5 |
class CommonsenseReasoningTask(BaseTask):
|
6 |
def __init__(self, model_name):
|
7 |
super().__init__("metunlp/commonsense", model_name=model_name)
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
10 |
-
print("Loading the dataset")
|
11 |
dataset = super().load_dataset_from_hf()
|
12 |
-
return dataset.select(range(min(
|
13 |
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
responses = []
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
for row in self.dataset:
|
20 |
-
|
|
|
|
|
21 |
label = row["label"]
|
22 |
choices=[row["choice1"], row["choice2"]]
|
23 |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if label == "effect":
|
26 |
question = "Seçeneklerden hangisi verilen önermenin bir sonucu veya etkisi olabilir?"
|
27 |
elif label == "cause":
|
@@ -29,21 +49,36 @@ class CommonsenseReasoningTask(BaseTask):
|
|
29 |
else:
|
30 |
question = "Seçeneklerden hangisi uygun?" # Alternatif
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper()
|
40 |
-
|
41 |
-
|
42 |
print(f"Correct Answer: {correct_answer_letter}")
|
43 |
print(f"Model Answer: {model_answer}")
|
44 |
print(f"Model Answer Cleaned: {model_answer_cleaned}")
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
acc_stderr = accuracy_standard_error(acc, total_count)
|
48 |
return {"acc": acc, "acc_stderr": acc_stderr}
|
49 |
|
|
|
1 |
from src.deepeval.base_task import BaseTask
|
2 |
+
from collections import defaultdict
|
3 |
from src.deepeval.utils import accuracy, accuracy_standard_error
|
4 |
from typing import Any
|
5 |
|
6 |
+
|
7 |
class CommonsenseReasoningTask(BaseTask):
|
8 |
def __init__(self, model_name):
|
9 |
super().__init__("metunlp/commonsense", model_name=model_name)
|
10 |
|
11 |
def load_dataset_from_hf(self):
|
|
|
12 |
dataset = super().load_dataset_from_hf()
|
13 |
+
return dataset.select(range(min(2, len(dataset))))
|
14 |
|
15 |
|
16 |
def evaluate(self) -> dict[str, Any]:
|
17 |
responses = []
|
18 |
+
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0})
|
19 |
+
total_count = 0
|
20 |
+
true = 0
|
21 |
+
|
22 |
for row in self.dataset:
|
23 |
+
total_count += 1
|
24 |
+
|
25 |
+
# Get values from row
|
26 |
label = row["label"]
|
27 |
choices=[row["choice1"], row["choice2"]]
|
28 |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
|
29 |
+
category = row["difficulty"]
|
30 |
+
answer = row["answer"]
|
31 |
+
|
32 |
+
# Prints for debugging
|
33 |
+
print(f"Choices: {choices}")
|
34 |
+
print("Type of choices:", type(choices))
|
35 |
+
print("Type of answer:", type(answer))
|
36 |
|
37 |
+
# Get answer index (starting from 0)
|
38 |
+
if type(answer) == int:
|
39 |
+
answer_index = answer - 1 # 1 or 2
|
40 |
+
else:
|
41 |
+
answer_index = int(answer) - 1
|
42 |
+
correct_answer_letter = chr(65 + answer_index)
|
43 |
+
|
44 |
+
# Get question based on label
|
45 |
if label == "effect":
|
46 |
question = "Seçeneklerden hangisi verilen önermenin bir sonucu veya etkisi olabilir?"
|
47 |
elif label == "cause":
|
|
|
49 |
else:
|
50 |
question = "Seçeneklerden hangisi uygun?" # Alternatif
|
51 |
|
52 |
+
# Construct the prompt/message
|
53 |
+
instruction = ""
|
54 |
+
prompt = f"Bağlam:\n{row["text"]}\nÖnerme:\n{row["context"]}\nSoru:{question}\nSeçenekler:\n{formatted_choices}\n{instruction}\n"
|
55 |
+
message = prompt
|
56 |
|
57 |
+
# Get/format answer of the model
|
58 |
+
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=10)
|
59 |
+
responses.append(model_answer)
|
60 |
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper()
|
61 |
+
|
62 |
+
# Print answers
|
63 |
print(f"Correct Answer: {correct_answer_letter}")
|
64 |
print(f"Model Answer: {model_answer}")
|
65 |
print(f"Model Answer Cleaned: {model_answer_cleaned}")
|
66 |
|
67 |
+
# Check if correct based on metric
|
68 |
+
if correct_answer_letter == model_answer_cleaned:
|
69 |
+
true += 1
|
70 |
+
difficulty_results[category]['correct'] += 1
|
71 |
+
|
72 |
+
difficulty_results[category]['total'] += 1
|
73 |
+
|
74 |
+
# Print results categorized by difficulty
|
75 |
+
for category, stats in difficulty_results.items():
|
76 |
+
calculatedAccuracy = stats['correct'] / stats['total'] if stats['total'] > 0 else 0
|
77 |
+
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({stats['correct']}/{stats['total']})")
|
78 |
+
|
79 |
+
print("Results:", responses)
|
80 |
+
print("Overall Accuracy:", true / total_count)
|
81 |
+
acc = accuracy(true, total_count)
|
82 |
acc_stderr = accuracy_standard_error(acc, total_count)
|
83 |
return {"acc": acc, "acc_stderr": acc_stderr}
|
84 |
|