Spaces:
Runtime error
Runtime error
import nltk; nltk.download('wordnet') | |
#@title Load Model | |
selected_model = 'lookbook' | |
# Load model | |
import torch | |
import PIL | |
import numpy as np | |
import ipywidgets as widgets | |
from PIL import Image | |
import imageio | |
from models import get_instrumented_model | |
from decomposition import get_or_compute | |
from config import Config | |
from skimage import img_as_ubyte | |
import gradio as gr | |
import numpy as np | |
from ipywidgets import fixed | |
# Speed up computation | |
torch.autograd.set_grad_enabled(False) | |
torch.backends.cudnn.benchmark = True | |
# Specify model to use | |
config = Config( | |
model='StyleGAN2', | |
layer='style', | |
output_class=selected_model, | |
components=80, | |
use_w=True, | |
batch_size=5_000, # style layer quite small | |
) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
inst = get_instrumented_model(config.model, config.output_class, | |
config.layer, torch.device(device), use_w=config.use_w) | |
path_to_components = get_or_compute(config, inst) | |
model = inst.model | |
comps = np.load(path_to_components) | |
lst = comps.files | |
latent_dirs = [] | |
latent_stdevs = [] | |
load_activations = False | |
for item in lst: | |
if load_activations: | |
if item == 'act_comp': | |
for i in range(comps[item].shape[0]): | |
latent_dirs.append(comps[item][i]) | |
if item == 'act_stdev': | |
for i in range(comps[item].shape[0]): | |
latent_stdevs.append(comps[item][i]) | |
else: | |
if item == 'lat_comp': | |
for i in range(comps[item].shape[0]): | |
latent_dirs.append(comps[item][i]) | |
if item == 'lat_stdev': | |
for i in range(comps[item].shape[0]): | |
latent_stdevs.append(comps[item][i]) | |
#@title Define functions | |
# Taken from https://github.com/alexanderkuk/log-progress | |
def log_progress(sequence, every=1, size=None, name='Items'): | |
from ipywidgets import IntProgress, HTML, VBox | |
from IPython.display import display | |
is_iterator = False | |
if size is None: | |
try: | |
size = len(sequence) | |
except TypeError: | |
is_iterator = True | |
if size is not None: | |
if every is None: | |
if size <= 200: | |
every = 1 | |
else: | |
every = int(size / 200) # every 0.5% | |
else: | |
assert every is not None, 'sequence is iterator, set every' | |
if is_iterator: | |
progress = IntProgress(min=0, max=1, value=1) | |
progress.bar_style = 'info' | |
else: | |
progress = IntProgress(min=0, max=size, value=0) | |
label = HTML() | |
box = VBox(children=[label, progress]) | |
display(box) | |
index = 0 | |
try: | |
for index, record in enumerate(sequence, 1): | |
if index == 1 or index % every == 0: | |
if is_iterator: | |
label.value = '{name}: {index} / ?'.format( | |
name=name, | |
index=index | |
) | |
else: | |
progress.value = index | |
label.value = u'{name}: {index} / {size}'.format( | |
name=name, | |
index=index, | |
size=size | |
) | |
yield record | |
except: | |
progress.bar_style = 'danger' | |
raise | |
else: | |
progress.bar_style = 'success' | |
progress.value = index | |
label.value = "{name}: {index}".format( | |
name=name, | |
index=str(index or '?') | |
) | |
def name_direction(sender): | |
if not text.value: | |
print('Please name the direction before saving') | |
return | |
if num in named_directions.values(): | |
target_key = list(named_directions.keys())[list(named_directions.values()).index(num)] | |
print(f'Direction already named: {target_key}') | |
print(f'Overwriting... ') | |
del(named_directions[target_key]) | |
named_directions[text.value] = [num, start_layer.value, end_layer.value] | |
save_direction(random_dir, text.value) | |
for item in named_directions: | |
print(item, named_directions[item]) | |
def save_direction(direction, filename): | |
filename += ".npy" | |
np.save(filename, direction, allow_pickle=True, fix_imports=True) | |
print(f'Latent direction saved as {filename}') | |
def mix_w(w1, w2, content, style): | |
for i in range(0,5): | |
w2[i] = w1[i] * (1 - content) + w2[i] * content | |
for i in range(5, 16): | |
w2[i] = w1[i] * (1 - style) + w2[i] * style | |
return w2 | |
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None): | |
# blockPrint() | |
model.truncation = truncation | |
if w is None: | |
w = model.sample_latent(1, seed=seed).detach().cpu().numpy() | |
w = [w]*model.get_max_latents() # one per layer | |
else: | |
w = [np.expand_dims(x, 0) for x in w] | |
for l in range(start, end): | |
for i in range(len(directions)): | |
w[l] = w[l] + directions[i] * distances[i] * scale | |
torch.cuda.empty_cache() | |
#save image and display | |
out = model.sample_np(w) | |
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS) | |
if save is not None: | |
if disp == False: | |
print(save) | |
final_im.save(f'out/{seed}_{save:05}.png') | |
if disp: | |
display(final_im) | |
return final_im | |
def generate_mov(seed, truncation, direction_vec, scale, layers, n_frames, out_name = 'out', noise_spec = None, loop=True): | |
"""Generates a mov moving back and forth along the chosen direction vector""" | |
# Example of reading a generated set of images, and storing as MP4. | |
movieName = f'{out_name}.mp4' | |
offset = -10 | |
step = 20 / n_frames | |
imgs = [] | |
for i in log_progress(range(n_frames), name = "Generating frames"): | |
print(f'\r{i} / {n_frames}', end='') | |
w = model.sample_latent(1, seed=seed).cpu().numpy() | |
model.truncation = truncation | |
w = [w]*model.get_max_latents() # one per layer | |
for l in layers: | |
if l <= model.get_max_latents(): | |
w[l] = w[l] + direction_vec * offset * scale | |
#save image and display | |
out = model.sample_np(w) | |
final_im = Image.fromarray((out * 255).astype(np.uint8)) | |
imgs.append(out) | |
#increase offset | |
offset += step | |
if loop: | |
imgs += imgs[::-1] | |
with imageio.get_writer(movieName, mode='I') as writer: | |
for image in log_progress(list(imgs), name = "Creating animation"): | |
writer.append_data(img_as_ubyte(image)) | |
#@title Demo UI | |
def generate_image(seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer): | |
seed1 = int(seed1) | |
seed2 = int(seed2) | |
scale = 1 | |
params = {'c0': c0, | |
'c1': c1, | |
'c2': c2, | |
'c3': c3, | |
'c4': c4, | |
'c5': c5, | |
'c6': c6} | |
param_indexes = {'c0': 0, | |
'c1': 1, | |
'c2': 2, | |
'c3': 3, | |
'c4': 4, | |
'c5': 5, | |
'c6': 6} | |
directions = [] | |
distances = [] | |
for k, v in params.items(): | |
directions.append(latent_dirs[param_indexes[k]]) | |
distances.append(v) | |
w1 = model.sample_latent(1, seed=seed1).detach().cpu().numpy() | |
w1 = [w1]*model.get_max_latents() # one per layer | |
im1 = model.sample_np(w1) | |
w2 = model.sample_latent(1, seed=seed2).detach().cpu().numpy() | |
w2 = [w2]*model.get_max_latents() # one per layer | |
im2 = model.sample_np(w2) | |
combined_im = np.concatenate([im1, im2], axis=1) | |
input_im = Image.fromarray((combined_im * 255).astype(np.uint8)) | |
mixed_w = mix_w(w1, w2, content, style) | |
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False) | |
truncation = gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label="Truncation") | |
start_layer = gr.inputs.Number(default=3, label="Start Layer") | |
end_layer = gr.inputs.Number(default=14, label="End Layer") | |
seed1 = gr.inputs.Number(default=0, label="Seed 1") | |
seed2 = gr.inputs.Number(default=0, label="Seed 2") | |
content = gr.inputs.Slider(label="Structure", minimum=0, maximum=1, default=0.5) | |
style = gr.inputs.Slider(label="Style", minimum=0, maximum=1, default=0.5) | |
slider_max_val = 20 | |
slider_min_val = -20 | |
slider_step = 1 | |
c0 = gr.inputs.Slider(label="Sleeve & Size", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
c1 = gr.inputs.Slider(label="Dress - Jacket", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
c2 = gr.inputs.Slider(label="Female Coat", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
c3 = gr.inputs.Slider(label="Coat", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
c4 = gr.inputs.Slider(label="Graphics", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
c5 = gr.inputs.Slider(label="Dark", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
c6 = gr.inputs.Slider(label="Less Cleavage", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
scale = 1 | |
inputs = [seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer] | |
description = "Change the seed number to generate different parent design. Made by <a href='https://www.mfrashad.com/' target='_blank'>@mfrashad</a>. For more details on how to build this, read the <a href='https://towardsdatascience.com/how-to-build-an-ai-fashion-designer-575b5e67915e' target='_blank'>article</a> or <a href='https://github.com/mfrashad/ClothingGAN' target='_blank'>repo</a>. Please give a clap/star if you find it useful :)" | |
gr.Interface(generate_image, inputs, ["image", "image"], description=description, live=True, title="ClothingGAN").launch() |