Spaces:
Sleeping
Sleeping
File size: 20,207 Bytes
6a39465 943c488 6a39465 943c488 21689c4 6a39465 21689c4 6a39465 943c488 6a39465 943c488 6a39465 943c488 6a39465 943c488 c4fcaff 943c488 6a39465 943c488 6a39465 943c488 6a39465 943c488 6a39465 943c488 6a39465 943c488 0d23f5f 943c488 0d23f5f 943c488 6a39465 943c488 0d23f5f 943c488 6a39465 943c488 6a39465 943c488 6a39465 943c488 6a39465 943c488 6a39465 943c488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
# app.py
"""
MedSketch AI: Advanced Clinical Diagram Generator
A Streamlit application leveraging AI models (GPT-4o, potentially Stable Diffusion)
to generate medical diagrams based on user prompts, with options for styling,
metadata association, and annotations.
"""
import os
import json
import logging
from io import BytesIO
from typing import List, Dict, Any, Optional, Tuple
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from PIL import Image
import openai
from openai import OpenAI, OpenAIError # Use modern OpenAI client and error types
# βββ Constants βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
APP_TITLE = "MedSketch AI β Advanced Clinical Diagram Generator"
DEFAULT_MODEL = "GPT-4o (Vision)" # Updated model name
STABLE_DIFFUSION_MODEL = "Stable Diffusion LoRA" # Placeholder name
MODEL_OPTIONS = [DEFAULT_MODEL, STABLE_DIFFUSION_MODEL]
STYLE_PRESETS = ["Anatomical Diagram", "H&E Histology", "IHC Pathology", "Custom"]
DEFAULT_STYLE = "Anatomical Diagram"
DEFAULT_STRENGTH = 0.7
IMAGE_SIZE = "1024x1024"
CANVAS_SIZE = 512
ANNOTATION_COLOR = "rgba(255, 0, 0, 0.3)" # Red with transparency
ANNOTATION_STROKE_WIDTH = 2
SESSION_STATE_ANNOTATIONS = "medsketch_annotations"
SESSION_STATE_HISTORY = "medsketch_history" # Store generated images too
# βββ Setup & Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββ
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
st.set_page_config(
page_title=APP_TITLE,
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'About': f"{APP_TITLE} - Generates medical diagrams using AI.",
'Get Help': None, # Add a link if you have one
'Report a bug': None # Add a link if you have one
}
)
# Initialize OpenAI Client (Best Practice)
# Use st.secrets for deployment, fallback to env var for local dev
api_key = st.secrets.get("OPENAI_API_KEY", os.getenv("OPENAI_API_KEY"))
if not api_key:
st.error("π¨ OpenAI API Key not found! Please set it in Streamlit secrets or environment variables.", icon="π¨")
st.stop() # Halt execution if no key
try:
client = OpenAI(api_key=api_key)
logger.info("OpenAI client initialized successfully.")
except Exception as e:
st.error(f"π¨ Failed to initialize OpenAI client: {e}", icon="π¨")
logger.exception("OpenAI client initialization failed.")
st.stop()
# βββ Helper Functions βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def generate_openai_image(prompt: str, style: str, strength: float) -> Image.Image:
"""
Generates an image using the OpenAI API (GPT-4o).
Args:
prompt: The user's text prompt.
style: The selected style preset.
strength: The stylization strength (conceptually used in prompt).
Returns:
A PIL Image object.
Raises:
OpenAIError: If the API call fails.
IOError: If the image data cannot be processed.
"""
logger.info(f"Requesting OpenAI image generation for prompt: '{prompt}' with style '{style}'")
full_prompt = f"Style: [{style}], Strength: [{strength:.2f}] - Generate the following medical illustration: {prompt}"
try:
response = client.images.generate(
model="dall-e-3", # Or "gpt-4o" if/when available via this endpoint. DALL-E 3 is current standard.
prompt=full_prompt,
size=IMAGE_SIZE,
quality="standard", # or "hd"
n=1,
response_format="url" # Or "b64_json" to avoid a second request
)
image_url = response.data[0].url
logger.info(f"Image generated successfully, URL: {image_url}")
# Fetch the image data from the URL
# Note: Using response_format="b64_json" would avoid this extra step
import requests # Need to import requests library
image_response = requests.get(image_url, timeout=30) # Add timeout
image_response.raise_for_status() # Check for HTTP errors
img_data = BytesIO(image_response.content)
img = Image.open(img_data)
return img
except OpenAIError as e:
logger.error(f"OpenAI API error: {e}")
st.error(f"β OpenAI API Error: {e}", icon="β")
raise
except requests.exceptions.RequestException as e:
logger.error(f"Failed to download image from URL {image_url}: {e}")
st.error(f"β Network Error: Failed to download image. {e}", icon="β")
raise IOError(f"Failed to download image: {e}") from e
except Exception as e:
logger.exception(f"An unexpected error occurred during OpenAI image generation: {e}")
st.error(f"β An unexpected error occurred: {e}", icon="β")
raise
def generate_sd_image(prompt: str, style: str, strength: float) -> Image.Image:
"""
Placeholder for generating an image using a Stable Diffusion LoRA model.
Replace this with your actual implementation.
Args:
prompt: The user's text prompt.
style: The selected style preset.
strength: The stylization strength.
Returns:
A PIL Image object (dummy implementation).
Raises:
NotImplementedError: As this is a placeholder.
"""
logger.warning("Stable Diffusion LoRA model generation is not implemented. Returning placeholder.")
st.warning("π§ Stable Diffusion LoRA generation is not yet implemented. Using placeholder.", icon="π§")
# --- Placeholder Implementation ---
# Replace this with actual SD model call
# For now, create a simple dummy image with text
img = Image.new('RGB', (CANVAS_SIZE, CANVAS_SIZE), color = (210, 210, 210))
from PIL import ImageDraw
d = ImageDraw.Draw(img)
d.text((10,10), f"Stable Diffusion Placeholder\nStyle: {style}\nPrompt: {prompt[:50]}...", fill=(0,0,0))
# --- End Placeholder ---
# Simulate some processing time
import time
time.sleep(1)
return img
# raise NotImplementedError("Stable Diffusion LoRA generation is not yet available.")
def display_result(image: Image.Image, prompt: str, index: int, total: int) -> Optional[List[Dict[str, Any]]]:
"""
Displays a generated image, download button, and annotation canvas.
Args:
image: The PIL Image to display.
prompt: The prompt used to generate the image.
index: The index of the current image in a batch.
total: The total number of images in the batch.
Returns:
Annotation data (list of dicts) if annotations were made, otherwise None.
"""
st.image(image, caption=f"Result {index + 1}/{total}: {prompt}", use_container_width=True)
# Prepare image for download
buf = BytesIO()
image.save(buf, format="PNG")
buf.seek(0)
st.download_button(
label="β¬οΈ Download PNG",
data=buf,
file_name=f"medsketch_{index+1}_{prompt[:20].replace(' ', '_')}.png",
mime="image/png",
key=f"download_{index}"
)
# Annotation Canvas
st.markdown("**βοΈ Annotate:**")
# Resize image for canvas if needed, maintaining aspect ratio (optional)
# For simplicity, we assume the canvas size matches desired annotation size
canvas_image = image.copy()
canvas_image.thumbnail((CANVAS_SIZE, CANVAS_SIZE))
canvas_result = st_canvas(
fill_color=ANNOTATION_COLOR,
stroke_width=ANNOTATION_STROKE_WIDTH,
background_image=canvas_image,
update_streamlit=True, # Update in real-time
height=canvas_image.height,
width=canvas_image.width,
drawing_mode="freedraw", # Or choose other modes like "line", "rect", etc.
key=f"canvas_{index}"
)
if canvas_result.json_data and canvas_result.json_data.get("objects"):
return canvas_result.json_data["objects"]
return None
# βββ Initialize Session State βββββββββββββββββββββββββββββββββββββββββββββββ
if SESSION_STATE_ANNOTATIONS not in st.session_state:
st.session_state[SESSION_STATE_ANNOTATIONS] = {} # Dict[prompt, List[annotation_objects]]
if SESSION_STATE_HISTORY not in st.session_state:
st.session_state[SESSION_STATE_HISTORY] = [] # List[Dict[str, Any]] storing generation results
# βββ Sidebar: Settings & Metadata βββββββββββββββββββββββββββββββββββββββββββ
with st.sidebar:
st.header("βοΈ Generation Settings")
model_choice = st.selectbox(
"Select Model",
options=MODEL_OPTIONS,
index=MODEL_OPTIONS.index(DEFAULT_MODEL),
help="Choose the AI model for image generation."
)
style_preset = st.radio(
"Select Preset Style",
options=STYLE_PRESETS,
index=STYLE_PRESETS.index(DEFAULT_STYLE),
horizontal=True, # More compact layout
help="Apply a predefined visual style to the generation."
)
# Allow custom style input only if "Custom" is selected
custom_style_input = ""
if style_preset == "Custom":
custom_style_input = st.text_input("Enter Custom Style Description:", key="custom_style")
final_style = custom_style_input if style_preset == "Custom" else style_preset
strength = st.slider(
"Stylization Strength",
min_value=0.1,
max_value=1.0,
value=DEFAULT_STRENGTH,
step=0.05,
help="Controls how strongly the chosen style influences the result (conceptual)."
)
st.markdown("---")
st.header("π Optional Metadata")
patient_id = st.text_input("Patient / Case ID", key="patient_id", help="Associate with a specific patient or case.")
roi = st.text_input("Region of Interest (ROI)", key="roi", help="Specify the anatomical region shown.")
umls_code = st.text_input("UMLS / SNOMED CT Code", key="umls_code", help="Link to relevant medical ontology codes.")
# Add a clear history button
st.markdown("---")
if st.button("β οΈ Clear History & Annotations", help="Removes all generated images and annotations from this session."):
st.session_state[SESSION_STATE_ANNOTATIONS] = {}
st.session_state[SESSION_STATE_HISTORY] = []
st.rerun() # Refresh the page to reflect cleared state
# βββ Main Application Area βββββββββββββββββββββββββββββββββββββββββββββββββββ
st.title(APP_TITLE)
st.markdown("Generate medical illustrations from text descriptions using AI. Annotate and export your results.")
# --- Prompt Input Area ---
prompt_input_area = st.container()
with prompt_input_area:
st.subheader("π Enter Prompt(s)")
st.caption("Enter one prompt per line to generate multiple images in a batch.")
raw_prompts = st.text_area(
"Describe the medical diagram(s) you need:",
placeholder=(
"Example 1: A sagittal view of the human knee joint, labeling the ACL, PCL, meniscus, femur, and tibia.\n"
"Example 2: High-power field H&E stain of lung adenocarcinoma showing glandular formation.\n"
"Example 3: Immunohistochemistry (IHC) stain for PD-L1 in tonsil tissue, showing positive staining on immune cells."
),
height=150, # Slightly larger height
label_visibility="collapsed"
)
prompts: List[str] = [p.strip() for p in raw_prompts.splitlines() if p.strip()]
# --- Generation Trigger ---
generate_button = st.button(
f"π Generate Diagram{'s' if len(prompts) > 1 else ''}",
type="primary",
disabled=not prompts, # Disable if no prompts
use_container_width=True
)
# --- Generation and Display Area ---
results_area = st.container()
if generate_button:
if not prompts:
st.warning("β οΈ Please enter at least one prompt description.", icon="β οΈ")
else:
logger.info(f"Starting generation for {len(prompts)} prompts using model '{model_choice}'.")
num_prompts = len(prompts)
max_cols = 3 # Adjust number of columns based on screen width or preference
cols = st.columns(min(max_cols, num_prompts))
# Use a progress bar for batch generation
progress_bar = st.progress(0, text=f"Initializing generation...")
for i, prompt in enumerate(prompts):
col_index = i % max_cols
with cols[col_index]:
st.markdown(f"--- \n**Processing: {i+1}/{num_prompts}**")
spinner_msg = f"Generating image {i+1}/{num_prompts} for prompt: \"{prompt[:50]}...\""
with st.spinner(spinner_msg):
try:
# Select generation function based on model choice
if model_choice == DEFAULT_MODEL:
generated_image = generate_openai_image(prompt, final_style, strength)
elif model_choice == STABLE_DIFFUSION_MODEL:
generated_image = generate_sd_image(prompt, final_style, strength)
else:
st.error(f"Unknown model selected: {model_choice}", icon="β")
continue # Skip to next prompt
# Display result and get annotations
annotations = display_result(generated_image, prompt, i, num_prompts)
# Store results and annotations in session state
result_data = {
"prompt": prompt,
"model": model_choice,
"style": final_style,
"strength": strength,
"metadata": {
"patient_id": patient_id,
"roi": roi,
"umls_code": umls_code,
},
# Store image data efficiently (e.g., as base64 or keep PIL object if memory allows)
# For simplicity here, we might just store prompt and annotations.
# Storing images in session state can consume a lot of memory.
# Let's store the prompt reference and annotations.
"image_ref_index": i # Reference to this generation instance
}
st.session_state[SESSION_STATE_HISTORY].append(result_data)
if annotations:
st.session_state[SESSION_STATE_ANNOTATIONS][prompt] = annotations
st.success(f"Annotations saved for prompt {i+1}.", icon="β
")
except (OpenAIError, IOError, NotImplementedError, Exception) as e:
# Errors are logged and displayed by the generation functions
st.error(f"Failed to generate image for prompt: '{prompt}'. Error: {e}", icon="π₯")
# Optionally add failed attempts to history?
st.session_state[SESSION_STATE_HISTORY].append({
"prompt": prompt, "status": "failed", "error": str(e)
})
# Update progress bar
progress_val = (i + 1) / num_prompts
progress_bar.progress(progress_val, text=f"Generated {i+1}/{num_prompts} images...")
progress_bar.progress(1.0, text="Batch generation complete!")
st.toast(f"Finished generating {num_prompts} image(s)!", icon="π")
# Explicitly clear the progress bar after completion
# (Streamlit often handles this, but explicit removal can be cleaner)
# Consider removing or hiding the progress bar element if needed after completion.
# βββ History & Exports Section βββββββββββββββββββββββββββββββββββββββββββββββ
history_area = st.container()
with history_area:
# Use session state history which is more robust
if st.session_state[SESSION_STATE_HISTORY]:
st.markdown("---")
st.subheader("π Session History & Annotations")
st.caption("Review generated images (if stored) and their annotations from this session.")
# Display stored history (simplified view focusing on annotations)
for idx, item in enumerate(st.session_state[SESSION_STATE_HISTORY]):
if item.get("status") == "failed":
st.warning(f"**Prompt {idx+1} (Failed):** {item['prompt']} \n *Error: {item['error']}*", icon="β οΈ")
else:
prompt_key = item["prompt"]
st.markdown(f"**Prompt {idx+1}:** `{prompt_key}`")
st.markdown(f"*Model: {item['model']}, Style: {item['style']}*")
# Display metadata if present
meta = item.get('metadata', {})
if any(meta.values()):
meta_str = ", ".join([f"{k}: {v}" for k, v in meta.items() if v])
st.markdown(f"*Metadata: {meta_str}*")
# Check for annotations for this prompt
annotations = st.session_state[SESSION_STATE_ANNOTATIONS].get(prompt_key)
if annotations:
with st.expander(f"View {len(annotations)} Annotation(s)"):
st.json(annotations)
else:
st.caption("_(No annotations made for this item yet)_")
st.markdown("---") # Separator between history items
# --- Export Annotations ---
if st.session_state[SESSION_STATE_ANNOTATIONS]:
st.markdown("---")
st.subheader("β¬οΈ Export Annotations")
try:
# Prepare data with metadata included per annotation set
export_data = {}
# Find corresponding history item to enrich annotation export
history_map = {item['prompt']: item for item in st.session_state[SESSION_STATE_HISTORY] if item.get('status') != 'failed'}
for prompt, ann_objs in st.session_state[SESSION_STATE_ANNOTATIONS].items():
history_item = history_map.get(prompt)
export_data[prompt] = {
"annotations": ann_objs,
"generation_details": {
"model": history_item.get('model'),
"style": history_item.get('style'),
"strength": history_item.get('strength'),
} if history_item else None,
"metadata": history_item.get('metadata') if history_item else None
}
json_data = json.dumps(export_data, indent=2)
st.download_button(
label="β¬οΈ Export All Annotations (JSON)",
data=json_data,
file_name="medsketch_session_annotations.json",
mime="application/json",
help="Download all annotations made during this session, including associated metadata."
)
except Exception as e:
st.error(f"Failed to prepare annotations for download: {e}")
logger.error(f"Error preparing JSON export: {e}")
elif generate_button: # If generate was clicked but history is empty (e.g., all failed)
st.info("No successful generations or annotations in the current session yet.")
# Add a footer (optional)
st.markdown("---")
st.caption("MedSketch AI - Powered by Streamlit and OpenAI") |