Spaces:
Sleeping
Sleeping
File size: 18,870 Bytes
ed31030 0d23f5f ed31030 0d23f5f 21689c4 228cbf8 0d23f5f ed31030 228cbf8 21689c4 0d23f5f 21689c4 0d23f5f 21689c4 ed31030 21689c4 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 21689c4 ed31030 0d23f5f ed31030 0d23f5f ed31030 0d23f5f ed31030 21689c4 ed31030 21689c4 0d23f5f ed31030 228cbf8 ed31030 0d23f5f 21689c4 ed31030 21689c4 ed31030 228cbf8 ed31030 228cbf8 21689c4 ed31030 21689c4 228cbf8 21689c4 ed31030 21689c4 ed31030 21689c4 ed31030 21689c4 ed31030 21689c4 ed31030 228cbf8 0d23f5f ed31030 0d23f5f ed31030 21689c4 ed31030 21689c4 ed31030 21689c4 ed31030 228cbf8 ed31030 228cbf8 ed31030 228cbf8 ed31030 0d23f5f 21689c4 ed31030 228cbf8 ed31030 21689c4 0d23f5f ed31030 0d23f5f ed31030 0d23f5f 21689c4 ed31030 228cbf8 0d23f5f ed31030 0d23f5f ed31030 21689c4 ed31030 228cbf8 0d23f5f ed31030 0d23f5f ed31030 228cbf8 ed31030 21689c4 ed31030 21689c4 ed31030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# --- Docstring ---
"""
Streamlit application for Medical Image Analysis using Google Gemini Vision
and Retrieval-Augmented Generation (RAG) with Chroma DB, enhanced for
Hugging Face Spaces deployment and improved practices.
Features:
- Image analysis via Google Gemini Pro Vision.
- RAG using Chroma DB with Hugging Face embeddings.
- Caching for performance.
- Basic logging.
- Improved UX and error handling.
- Explicit Disclaimer.
"""
# --- Imports ---
import streamlit as st
import google.generativeai as genai
import chromadb
from chromadb.utils import embedding_functions
from PIL import Image
import io
import time
import logging
from typing import Optional, Dict, List, Any, Tuple
# --- Basic Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Application Configuration ---
# Secrets Management (Prioritize Hugging Face Secrets)
try:
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
# HF_TOKEN is optional for many public models, but required for gated/private ones
HF_TOKEN = st.secrets.get("HF_TOKEN") # Use .get() for optional token
except KeyError as e:
err_msg = f"β Missing Secret: {e}. Please add it to your Hugging Face Space secrets."
st.error(err_msg)
logger.error(err_msg)
st.stop()
except Exception as e:
err_msg = f"β Error loading secrets: {e}"
st.error(err_msg)
logger.error(err_msg)
st.stop()
# Gemini Configuration
VISION_MODEL_NAME = "gemini-pro-vision"
GENERATION_CONFIG = {
"temperature": 0.2,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 1024,
}
SAFETY_SETTINGS = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
]
GEMINI_ANALYSIS_PROMPT = """Analyze this medical image (e.g., pathology slide, diagram, scan).
Describe the key visual features relevant to a medical context.
Identify potential:
- Diseases or conditions indicated
- Pathological findings (e.g., cellular morphology, tissue structure, staining patterns)
- Visible cell types
- Relevant biomarkers (if inferable from staining or morphology)
- Anatomical context (if discernible)
Be concise and focus primarily on visually evident information. Avoid definitive diagnoses.
Structure the output clearly, perhaps using bullet points for findings.
"""
# Chroma DB Configuration
CHROMA_PATH = "chroma_data_hf" # Use a distinct path if needed
COLLECTION_NAME = "medical_docs_hf"
# IMPORTANT: Choose an appropriate HF embedding model. 'all-mpnet-base-v2' is general purpose.
# For better medical results, consider models like:
# - 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext' (might need more RAM/compute)
# - 'dmis-lab/sapbert-from-pubmedbert-sentencetransformer'
# - Other models tagged 'medical' or 'biomedical' on Hugging Face Hub.
# Ensure the chosen model is compatible with chromadb's HuggingFaceEmbeddingFunction.
EMBEDDING_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" # <-- REPLACE if possible
CHROMA_DISTANCE_METRIC = "cosine"
# --- Caching Resource Initialization ---
@st.cache_resource
def initialize_gemini_model() -> Optional[genai.GenerativeModel]:
"""Initializes and returns the Gemini Generative Model."""
try:
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel(
model_name=VISION_MODEL_NAME,
generation_config=GENERATION_CONFIG,
safety_settings=SAFETY_SETTINGS
)
logger.info(f"Successfully initialized Gemini Model: {VISION_MODEL_NAME}")
return model
except Exception as e:
err_msg = f"β Error initializing Gemini Model ({VISION_MODEL_NAME}): {e}"
st.error(err_msg)
logger.error(err_msg, exc_info=True)
return None
@st.cache_resource
def initialize_embedding_function() -> Optional[embedding_functions.HuggingFaceEmbeddingFunction]:
"""Initializes and returns the Hugging Face Embedding Function."""
try:
# Pass HF_TOKEN if it exists (required for private/gated models)
api_key_param = {"api_key": HF_TOKEN} if HF_TOKEN else {}
embed_func = embedding_functions.HuggingFaceEmbeddingFunction(
api_key=HF_TOKEN, # Pass token here if needed by model
model_name=EMBEDDING_MODEL_NAME
)
logger.info(f"Successfully initialized HuggingFace Embedding Function: {EMBEDDING_MODEL_NAME}")
return embed_func
except Exception as e:
err_msg = f"β Error initializing HuggingFace Embedding Function ({EMBEDDING_MODEL_NAME}): {e}"
st.error(err_msg)
logger.error(err_msg, exc_info=True)
st.info("βΉοΈ Make sure the embedding model name is correct and you have network access. "
"If using a private model, ensure HF_TOKEN is set in secrets.")
return None
@st.cache_resource
def initialize_chroma_collection(_embedding_func: embedding_functions.EmbeddingFunction) -> Optional[chromadb.Collection]:
"""Initializes the Chroma DB client and returns the collection."""
if not _embedding_func:
st.error("β Cannot initialize Chroma DB without a valid embedding function.")
return None
try:
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
collection = chroma_client.get_or_create_collection(
name=COLLECTION_NAME,
embedding_function=_embedding_func, # Pass the initialized function
metadata={"hnsw:space": CHROMA_DISTANCE_METRIC}
)
logger.info(f"Chroma DB collection '{COLLECTION_NAME}' loaded/created at '{CHROMA_PATH}' using {CHROMA_DISTANCE_METRIC}.")
return collection
except Exception as e:
err_msg = f"β Error initializing Chroma DB at '{CHROMA_PATH}': {e}"
st.error(err_msg)
logger.error(err_msg, exc_info=True)
st.info(f"βΉοΈ Ensure the path '{CHROMA_PATH}' is writable.")
return None
# --- Core Logic Functions (with Caching for Data Operations) ---
@st.cache_data(show_spinner=False) # Show spinner manually in UI
def analyze_image_with_gemini(_gemini_model: genai.GenerativeModel, image_bytes: bytes) -> Tuple[str, bool]:
"""
Analyzes image bytes with Gemini, returns (analysis_text, is_error).
Uses Streamlit's caching based on image_bytes.
"""
if not _gemini_model:
return "Error: Gemini model not initialized.", True
try:
img = Image.open(io.BytesIO(image_bytes))
response = _gemini_model.generate_content([GEMINI_ANALYSIS_PROMPT, img])
if not response.parts:
if response.prompt_feedback and response.prompt_feedback.block_reason:
reason = response.prompt_feedback.block_reason
msg = f"Analysis blocked by safety settings: {reason}"
logger.warning(msg)
return msg, True # Indicate block/error state
else:
msg = "Error: Gemini analysis returned no content (empty or invalid response)."
logger.error(msg)
return msg, True
logger.info("Gemini analysis successful.")
return response.text, False # Indicate success
except genai.types.BlockedPromptException as e:
msg = f"Analysis blocked (prompt issue): {e}"
logger.warning(msg)
return msg, True
except Exception as e:
msg = f"Error during Gemini analysis: {e}"
logger.error(msg, exc_info=True)
return msg, True
@st.cache_data(show_spinner=False)
def query_chroma(_collection: chromadb.Collection, query_text: str, n_results: int = 5) -> Optional[Dict[str, List[Any]]]:
"""Queries Chroma DB, returns results dict or None on error."""
if not _collection:
return None
if not query_text:
logger.warning("Attempted to query Chroma with empty text.")
return None
try:
# Placeholder for potential query refinement:
# refined_query = refine_query_for_chroma(query_text) # Implement this if needed
refined_query = query_text # Using direct analysis text for now
results = _collection.query(
query_texts=[refined_query],
n_results=n_results,
include=['documents', 'metadatas', 'distances']
)
logger.info(f"Chroma query successful for text snippet: '{query_text[:50]}...'")
return results
except Exception as e:
err_msg = f"Error querying Chroma DB: {e}"
st.error(err_msg) # Show error in UI as well
logger.error(err_msg, exc_info=True)
return None
def add_dummy_data_to_chroma(collection: chromadb.Collection, embedding_func: embedding_functions.EmbeddingFunction):
"""Adds example medical text snippets to Chroma using the provided embedding function."""
if not collection or not embedding_func:
st.error("β Cannot add dummy data: Chroma Collection or Embedding Function not available.")
return
status = st.status("Adding dummy data to Chroma DB...", expanded=False)
try:
# --- Dummy Data Definition ---
# (Same data as before, but ensure metadata is useful)
docs = [
"Figure 1A shows adenocarcinoma of the lung, papillary subtype. Note the glandular structures and nuclear atypia. TTF-1 staining was positive.",
"Pathology slide 34B demonstrates high-grade glioma (glioblastoma) with significant necrosis and microvascular proliferation. Ki-67 index was high.",
"This diagram illustrates the EGFR signaling pathway and common mutation sites targeted by tyrosine kinase inhibitors in non-small cell lung cancer.",
"Micrograph showing chronic gastritis with Helicobacter pylori organisms (visible with special stain, not shown here). Mild intestinal metaplasia is present.",
"Slide CJD-Sample-02: Spongiform changes characteristic of prion disease are evident in the cerebral cortex. Gliosis is also noted."
]
metadatas = [
{"source": "Example Paper 1", "topic": "Lung Cancer Pathology", "entities": "adenocarcinoma, lung cancer, glandular structures, nuclear atypia, papillary subtype, TTF-1", "IMAGE_ID": "fig_1a_adeno_lung.png"},
{"source": "Path Report 789", "topic": "Brain Tumor Pathology", "entities": "high-grade glioma, glioblastoma, necrosis, microvascular proliferation, Ki-67", "IMAGE_ID": "slide_34b_gbm.tiff"},
{"source": "Textbook Chapter 5", "topic": "Molecular Oncology Pathways", "entities": "EGFR, tyrosine kinase inhibitors, non-small cell lung cancer", "IMAGE_ID": "diagram_egfr_pathway.svg"},
{"source": "Path Report 101", "topic": "Gastrointestinal Pathology", "entities": "chronic gastritis, Helicobacter pylori, intestinal metaplasia", "IMAGE_ID": "micrograph_h_pylori_gastritis.jpg"},
{"source": "Case Study CJD", "topic": "Neuropathology", "entities": "prion disease, Spongiform changes, Gliosis, cerebral cortex", "IMAGE_ID": "slide_cjd_sample_02.jpg"}
]
ids = [f"doc_hf_{int(time.time())}_{i}" for i in range(len(docs))]
# Check for existing documents (simple check based on text)
status.update(label="Checking for existing dummy documents...")
existing_docs = collection.get(where={"$or": [{"document": doc} for doc in docs]}, include=[])
if not existing_docs or not existing_docs.get('ids'):
status.update(label=f"Generating embeddings for {len(docs)} documents (may take time)...")
# Embeddings are generated implicitly by ChromaDB during .add()
# when an embedding_function is configured for the collection.
collection.add(
documents=docs,
metadatas=metadatas,
ids=ids
)
status.update(label=f"β
Added {len(docs)} dummy documents.", state="complete")
logger.info(f"Added {len(docs)} dummy documents to collection '{COLLECTION_NAME}'.")
else:
status.update(label="β οΈ Dummy data already exists. No new data added.", state="complete")
logger.warning("Dummy data seems to already exist in the collection based on text match.")
except Exception as e:
err_msg = f"Error adding dummy data to Chroma: {e}"
status.update(label=f"β Error: {err_msg}", state="error")
logger.error(err_msg, exc_info=True)
# --- Initialize Resources ---
# These calls use @st.cache_resource, so they run only once per session/resource change.
gemini_model = initialize_gemini_model()
embedding_func = initialize_embedding_function()
collection = initialize_chroma_collection(embedding_func) # Pass embedding func to chroma init
# --- Streamlit UI ---
st.set_page_config(layout="wide", page_title="Medical Image Analysis & RAG (HF)")
st.title("βοΈ Medical Image Analysis & RAG (Hugging Face Enhanced)")
# --- DISCLAIMER ---
st.warning("""
**β οΈ Disclaimer:** This tool is for demonstration and informational purposes ONLY.
It is **NOT** a medical device and should **NOT** be used for actual medical diagnosis, treatment, or decision-making.
AI analysis can be imperfect. Always consult with qualified healthcare professionals for any medical concerns.
Do **NOT** upload identifiable patient data (PHI).
""")
st.markdown("""
Upload a medical image. Gemini Vision will analyze it, and related information
will be retrieved from a Chroma DB knowledge base using Hugging Face embeddings.
""")
# Sidebar
with st.sidebar:
st.header("βοΈ Controls")
uploaded_file = st.file_uploader(
"Choose an image...",
type=["jpg", "jpeg", "png", "tiff", "webp"],
help="Upload a medical image file (e.g., pathology, diagram)."
)
st.divider()
if st.button("β Add/Verify Dummy KB Data", help="Adds example text data to Chroma DB if it doesn't exist."):
if collection and embedding_func:
add_dummy_data_to_chroma(collection, embedding_func)
else:
st.error("β Cannot add dummy data: Chroma Collection or Embedding Function failed to initialize.")
st.divider()
st.info(f"""
**Setup Info:**
- Gemini Model: `{VISION_MODEL_NAME}`
- Embedding Model: `{EMBEDDING_MODEL_NAME}`
- Chroma Collection: `{COLLECTION_NAME}` (at `{CHROMA_PATH}`)
- Distance Metric: `{CHROMA_DISTANCE_METRIC}`
""")
st.caption(f"Using Google API Key: {'*' * (len(GOOGLE_API_KEY)-4)}{GOOGLE_API_KEY[-4:]}" if GOOGLE_API_KEY else "Not Set")
st.caption(f"Using HF Token: {'Provided' if HF_TOKEN else 'Not Provided'}")
# Main Display Area
col1, col2 = st.columns(2)
with col1:
st.subheader("πΌοΈ Uploaded Image")
if uploaded_file is not None:
image_bytes = uploaded_file.getvalue()
st.image(image_bytes, caption=f"Uploaded: {uploaded_file.name}", use_column_width=True)
else:
st.info("Upload an image using the sidebar to begin.")
with col2:
st.subheader("π¬ Analysis & Retrieval")
if uploaded_file is not None and gemini_model and collection:
# 1. Analyze Image
analysis_text = ""
analysis_error = False
with st.status("π§ Analyzing image with Gemini Vision...", expanded=True) as status_gemini:
# The actual analysis function is cached via @st.cache_data
analysis_text, analysis_error = analyze_image_with_gemini(gemini_model, image_bytes)
if analysis_error:
status_gemini.update(label=f"β οΈ Analysis Failed/Blocked: {analysis_text.split(':')[1].strip() if ':' in analysis_text else 'See details'}", state="error")
st.error(f"**Analysis Output:** {analysis_text}") # Show error/block message
else:
status_gemini.update(label="β
Analysis Complete", state="complete")
st.markdown("**Gemini Vision Analysis:**")
st.markdown(analysis_text)
# 2. Query Chroma if Analysis Succeeded
if not analysis_error and analysis_text:
st.markdown("---")
st.subheader("π Related Information (RAG)")
with st.status("π Searching knowledge base (Chroma DB)...", expanded=True) as status_chroma:
# The actual query function is cached via @st.cache_data
chroma_results = query_chroma(collection, analysis_text, n_results=3)
if chroma_results and chroma_results.get('documents') and chroma_results['documents'][0]:
num_results = len(chroma_results['documents'][0])
status_chroma.update(label=f"β
Found {num_results} related entries.", state="complete")
for i in range(num_results):
doc = chroma_results['documents'][0][i]
meta = chroma_results['metadatas'][0][i]
dist = chroma_results['distances'][0][i]
similarity = 1.0 - dist # For cosine distance
expander_title = f"Result {i+1} (Similarity: {similarity:.4f}) | Source: {meta.get('source', 'N/A')}"
with st.expander(expander_title):
st.markdown("**Retrieved Text:**")
st.markdown(f"> {doc}")
st.markdown("**Metadata:**")
# Display metadata keys/values more nicely
for key, value in meta.items():
st.markdown(f"- **{key.replace('_', ' ').title()}:** `{value}`")
# Highlight linked image ID
if meta.get("IMAGE_ID"):
st.info(f"βΉοΈ Associated visual asset ID: `{meta['IMAGE_ID']}`")
elif chroma_results is not None: # Query ran, no results
status_chroma.update(label="β οΈ No relevant information found.", state="warning")
else: # Error occurred during query (already logged and shown via st.error)
status_chroma.update(label="β Failed to retrieve results.", state="error")
elif not uploaded_file:
st.info("Analysis results will appear here once an image is uploaded.")
else:
st.error("β Analysis cannot proceed. Check if Gemini model or Chroma DB failed to initialize (see sidebar/logs).")
st.markdown("---")
st.markdown("<div style='text-align: center; font-size: small;'>Powered by Google Gemini, Chroma DB, Hugging Face, and Streamlit</div>", unsafe_allow_html=True)
|