mgbam commited on
Commit
bc80edf
Β·
verified Β·
1 Parent(s): 10922c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +471 -396
app.py CHANGED
@@ -1,181 +1,51 @@
 
 
1
  import streamlit as st
2
- from PIL import Image, UnidentifiedImageError
3
- import io
 
 
 
 
 
4
  import time
5
- import os
6
  import random
7
- import json # For API simulation
8
- import requests # To simulate API calls (though we won't make real ones here)
9
- import uuid # For job IDs
10
-
11
- # ------------------------------------------------------------------------------
12
- # Page Configuration
13
- # ------------------------------------------------------------------------------
14
- st.set_page_config(
15
- page_title="AI Real Estate Visualization Suite [PRO]",
16
- layout="wide",
17
- page_icon="πŸš€",
18
- initial_sidebar_state="expanded"
19
- )
20
-
21
- # ------------------------------------------------------------------------------
22
- # Simulated Backend API Interaction
23
- # ------------------------------------------------------------------------------
24
- # Replace with your actual backend API endpoint
25
- BACKEND_API_URL = "http://your-production-backend.com/api/v1/visualize"
26
- # Replace with your actual status check endpoint
27
- STATUS_API_URL = "http://your-production-backend.com/api/v1/status/{job_id}"
28
-
29
- # --- Simulate API Call ---
30
- def submit_visualization_job(payload: dict) -> tuple[str | None, str | None]:
31
- """
32
- Simulates submitting a job to the backend API.
33
- In reality, this would use 'requests.post'.
34
-
35
- Args:
36
- payload (dict): Data to send (params, input reference, etc.)
37
-
38
- Returns:
39
- tuple[str | None, str | None]: (job_id, error_message)
40
- """
41
- st.info("Submitting job to backend simulation...")
42
- print(f"SIMULATING API SUBMIT to {BACKEND_API_URL}")
43
- print("Payload (summary):")
44
- print(f" Mode: {payload.get('output_mode')}")
45
- print(f" Style: {payload.get('style')}")
46
- print(f" Input Type: {payload.get('input_type')}")
47
- # Omit potentially large data like image bytes from console log in real scenario
48
- # print(json.dumps(payload, indent=2)) # Don't print potentially large data
49
-
50
- # Simulate network latency & backend processing start
51
- time.sleep(1.5)
52
-
53
- # Simulate success/failure
54
- if random.random() < 0.95: # 95% success rate
55
- job_id = f"job_{uuid.uuid4()}"
56
- print(f"API Submit Simulation SUCCESS: Job ID = {job_id}")
57
- # In a real app, store job_id associated with user/session
58
- return job_id, None
59
- else:
60
- error_msg = "Simulated API Error: Failed to submit job (e.g., server busy, invalid params)."
61
- print(f"API Submit Simulation FAILED: {error_msg}")
62
- return None, error_msg
63
-
64
- # --- Simulate Status Check ---
65
- def check_job_status(job_id: str) -> tuple[str, str | None, str | None]:
66
- """
67
- Simulates checking the status of a job via the backend API.
68
- In reality, this would use 'requests.get'.
69
-
70
- Args:
71
- job_id (str): The ID of the job to check.
72
-
73
- Returns:
74
- tuple[str, str | None, str | None]: (status, result_url, error_message)
75
- status: 'PENDING', 'PROCESSING', 'COMPLETED', 'FAILED'
76
- """
77
- status_url = STATUS_API_URL.format(job_id=job_id)
78
- print(f"SIMULATING API STATUS CHECK for {job_id} at {status_url}")
79
- time.sleep(0.5) # Simulate network latency
80
-
81
- # Simulate different states based on time or random chance
82
- # This is highly simplified; a real backend manages state.
83
- if job_id not in st.session_state.job_progress:
84
- st.session_state.job_progress[job_id] = 0 # Start progress counter
85
 
86
- st.session_state.job_progress[job_id] += random.uniform(0.1, 0.3) # Increment progress
 
 
 
 
 
87
 
88
- if st.session_state.job_progress[job_id] < 0.2:
89
- status = "PENDING"
90
- elif st.session_state.job_progress[job_id] < 0.8:
91
- status = "PROCESSING"
92
- elif st.session_state.job_progress[job_id] < 1.0:
93
- # Simulate occasional failure during processing
94
- if random.random() < 0.05: # 5% chance of failure during processing
95
- print(f"API Status Simulation: Job {job_id} FAILED during processing.")
96
- st.session_state.job_progress[job_id] = 99 # Mark as failed state
97
- return "FAILED", None, "Simulated AI Processing Error."
98
- else:
99
- status = "PROCESSING" # Still processing
100
- else:
101
- status = "COMPLETED"
102
 
103
- if status == "COMPLETED":
104
- # Simulate getting a result URL (e.g., to a generated image in cloud storage)
105
- # Use a *real placeholder path* accessible by the Streamlit app for the demo
106
- result_placeholder = "assets/staged_result_placeholder.png" # Make sure this exists!
107
- print(f"API Status Simulation: Job {job_id} COMPLETED. Result URL (simulated): {result_placeholder}")
108
- return "COMPLETED", result_placeholder, None
109
- elif status == "FAILED":
110
- print(f"API Status Simulation: Job {job_id} FAILED.")
111
- # Error message might have been set earlier
112
- error = st.session_state.job_errors.get(job_id, "Unknown processing error.")
113
- return "FAILED", None, error
114
- else:
115
- print(f"API Status Simulation: Job {job_id} is {status}.")
116
- return status, None, None
117
-
118
- # --- Simulate Fetching Result Image ---
119
- def fetch_result_image(image_path_or_url: str) -> Image.Image | None:
120
- """
121
- Simulates fetching the result image from a URL or path.
122
- In reality, this would use requests.get for a URL.
123
- For this demo, we just load from the local placeholder path.
124
- """
125
- print(f"SIMULATING Fetching result image from: {image_path_or_url}")
126
- if os.path.exists(image_path_or_url):
127
- try:
128
- img = Image.open(image_path_or_url).convert("RGB")
129
- return img
130
- except UnidentifiedImageError:
131
- print(f"ERROR: Placeholder at '{image_path_or_url}' is not a valid image.")
132
- return None
133
- except Exception as e:
134
- print(f"ERROR: Failed to load placeholder '{image_path_or_url}': {e}")
135
- return None
136
- else:
137
- print(f"ERROR: Placeholder image not found at '{image_path_or_url}'.")
138
- return None
139
 
140
- # ------------------------------------------------------------------------------
141
- # Authentication Simulation
142
- # ------------------------------------------------------------------------------
143
- def show_login_form():
144
- st.warning("Please log in to use the Visualization Suite.")
145
- with st.form("login_form"):
146
- username = st.text_input("Username")
147
- password = st.text_input("Password", type="password")
148
- submitted = st.form_submit_button("Login")
149
- if submitted:
150
- # --- !!! WARNING: NEVER use hardcoded passwords in production !!! ---
151
- # --- This is purely for demonstration. Use secure auth libraries ---
152
- # --- like streamlit-authenticator or integrate with OAuth/etc. ---
153
- if username == "admin" and password == "password123":
154
- st.session_state.logged_in = True
155
- st.session_state.username = username
156
- st.success("Login successful!")
157
- time.sleep(1) # Give user time to see success message
158
- st.rerun() # Rerun to show the main app
159
- else:
160
- st.error("Invalid username or password.")
161
 
162
- # ------------------------------------------------------------------------------
163
- # Initialize Session State (More Robust)
164
- # ------------------------------------------------------------------------------
165
  def initialize_state():
 
166
  defaults = {
167
  'logged_in': False,
168
  'username': None,
169
- 'input_data_bytes': None, # Store raw bytes
170
- 'input_image_preview': None, # Store PIL for display if image
171
- 'input_type': None,
172
- 'uploaded_filename': None,
173
  'current_job_id': None,
174
- 'job_status': None, # PENDING, PROCESSING, COMPLETED, FAILED
175
- 'job_progress': {}, # Dict to track progress simulation per job_id
176
- 'job_errors': {}, # Dict to store errors per job_id
177
- 'ai_result_image': None,
178
- 'last_run_params': {}
 
 
 
 
 
 
179
  }
180
  for key, value in defaults.items():
181
  if key not in st.session_state:
@@ -183,259 +53,464 @@ def initialize_state():
183
 
184
  initialize_state()
185
 
186
- # ------------------------------------------------------------------------------
187
- # Main Application Logic
188
- # ------------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
  # --- Authentication Gate ---
191
  if not st.session_state.logged_in:
192
  show_login_form()
193
- st.stop() # Stop execution if not logged in
194
 
195
- # --- Main App UI (if logged in) ---
196
- st.title("πŸš€ AI Real Estate Visualization Suite [PRO]")
197
- st.caption(f"Welcome, {st.session_state.username}! Advanced AI tools at your fingertips.")
198
- st.markdown("---")
199
 
200
- # --- Sidebar ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  with st.sidebar:
202
- st.header("βš™οΈ Input & Configuration")
203
  st.caption(f"User: {st.session_state.username}")
204
- if st.button("Logout"):
205
- for key in list(st.session_state.keys()): # Clear state on logout
 
 
206
  del st.session_state[key]
207
- initialize_state() # Re-init default state
208
  st.rerun()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
 
210
  st.markdown("---")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
 
212
- # Prevent changing input while a job is running
213
- input_disabled = st.session_state.job_status in ["PENDING", "PROCESSING"]
214
-
215
- input_file = st.file_uploader(
216
- "1. Upload File",
217
- type=["png", "jpg", "jpeg", "webp", "dxf", "dwg", "obj", "fbx"], # Add more as needed
218
- key="file_uploader",
219
- accept_multiple_files=False,
220
- help="Upload Room Image, Floor Plan (DXF - simulated), or 3D Model (OBJ - simulated).",
221
- disabled=input_disabled
222
- )
223
-
224
- # --- Input Processing ---
225
- if input_file is not None:
226
- if input_file.name != st.session_state.uploaded_filename:
227
- st.info(f"Processing '{input_file.name}'...")
228
- file_ext = os.path.splitext(input_file.name)[1].lower()
229
- file_bytes = input_file.getvalue()
230
- processed = False
231
- input_image_preview = None
 
 
 
 
 
 
 
232
 
233
- try:
234
- if file_ext in ['.png', '.jpg', '.jpeg', '.webp']:
235
- image = Image.open(io.BytesIO(file_bytes)).convert("RGB")
236
- max_size = (1024, 1024)
237
- image.thumbnail(max_size, Image.Resampling.LANCZOS)
238
- input_image_preview = image # Store PIL for preview
239
- input_type = 'image'
240
- processed = True
241
- elif file_ext in ['.dxf', '.dwg']:
242
- input_type = 'floorplan'
243
- processed = True
244
- st.warning("Floor plan processing is simulated.")
245
- elif file_ext in ['.obj', '.fbx']:
246
- input_type = '3dmodel'
247
- processed = True
248
- st.warning("3D model processing is simulated.")
249
- else:
250
- st.error(f"Unsupported file type: {file_ext}")
251
-
252
- if processed:
253
- st.session_state.input_data_bytes = file_bytes # Store bytes for API
254
- st.session_state.input_image_preview = input_image_preview
255
- st.session_state.input_type = input_type
256
- st.session_state.uploaded_filename = input_file.name
257
- # Reset job state
258
- st.session_state.current_job_id = None
259
- st.session_state.job_status = None
260
- st.session_state.ai_result_image = None
261
- st.session_state.last_run_params = {}
262
- st.success(f"File '{input_file.name}' ({input_type}) loaded.")
263
- st.rerun() # Rerun to reflect loaded state
264
- else:
265
- st.session_state.input_data_bytes = None
266
- st.session_state.input_image_preview = None
267
- st.session_state.input_type = None
268
- st.session_state.uploaded_filename = None
269
-
270
- except UnidentifiedImageError:
271
- st.error("Uploaded file is not a valid image or is corrupted.")
272
- except Exception as e:
273
- st.error(f"Error processing file: {e}")
274
- st.session_state.input_data_bytes = None
275
- st.session_state.input_image_preview = None
276
- st.session_state.input_type = None
277
- st.session_state.uploaded_filename = None
278
-
279
-
280
- # --- Configuration Options ---
281
- if st.session_state.input_type is not None:
282
- st.markdown("---")
283
- st.subheader("2. Visualization Mode")
284
- output_mode = st.selectbox(
285
- "Select Mode:",
286
- options=['Virtual Staging', 'Renovation Preview', 'Material Swap', 'Layout Variation'],
287
- key='output_mode_select',
288
- disabled=input_disabled
289
- ).lower().replace(' ', '_')
290
-
291
- st.markdown("---")
292
- st.subheader("3. Scene Parameters")
293
- room_type = st.selectbox("Room Type:", ["Living Room", "Bedroom", "Kitchen", "Dining Room", "Office", "Bathroom", "Other"], key="room_select", disabled=input_disabled)
294
- style = st.selectbox("Primary Style:", ["Modern", "Contemporary", "Minimalist", "Scandinavian", "Industrial", "Traditional", "Coastal", "Farmhouse", "Bohemian"], key="style_select", disabled=input_disabled)
295
-
296
- # Advanced Controls
297
- with st.expander("✨ Advanced Controls", expanded=False):
298
- furniture_prefs = st.text_input("Furniture Preferences", placeholder="e.g., 'Large velvet green sofa'", key="furniture_input", disabled=input_disabled)
299
- wall_color = st.color_picker("Wall Color (Approx.)", value="#FFFFFF", key="wall_color_picker", disabled=input_disabled)
300
- floor_type = st.selectbox("Floor Type", ["(Auto)", "Oak Wood", "Dark Wood", "Light Wood", "Carpet (Neutral)", "Concrete", "Tile (Light)", "Tile (Dark)"], key="floor_select", disabled=input_disabled)
301
- lighting_time = st.slider("Time of Day", 0.0, 1.0, 0.5, 0.1, "%.1f", key="lighting_slider", help="0.0=Dawn, 0.5=Midday, 1.0=Dusk", disabled=input_disabled)
302
- camera_angle = st.selectbox("Camera Angle", ["Eye-Level", "High Angle", "Low Angle", "Wide (Simulated)"], key="camera_select", disabled=input_disabled)
303
- remove_objects = st.checkbox("Attempt Remove Existing Objects", value=False, key="remove_obj_check", disabled=input_disabled)
304
- renovation_instructions = ""
305
- if output_mode == 'renovation_preview':
306
- renovation_instructions = st.text_input("Renovation Instructions", placeholder="e.g., 'Remove center wall'", key="renovation_input", disabled=input_disabled)
307
-
308
- st.markdown("---")
309
- st.subheader("4. Generate Visualization")
310
-
311
- # Disable button if no input or job already running
312
- disable_generate = st.session_state.input_type is None or st.session_state.job_status in ["PENDING", "PROCESSING"]
313
- if st.button("πŸš€ Submit Visualization Job", key="generate_button", use_container_width=True, disabled=disable_generate):
314
- # Prepare payload for the backend
315
- # In production, you'd likely upload the file to S3 first and send a URL/key
316
- # For image data, you might send base64 encoded string or upload separately
317
- payload = {
318
- "user_id": st.session_state.username, # Identify the user
319
- # "input_reference": "s3://bucket/user_uploads/filename.jpg", # Example
320
- "input_filename": st.session_state.uploaded_filename, # For info
321
- "input_type": st.session_state.input_type,
322
- "output_mode": output_mode,
323
- "room_type": room_type,
324
- "style": style,
325
- "furniture_prefs": furniture_prefs,
326
- "materials": {'wall_color': wall_color, 'floor_type': floor_type},
327
- "lighting_time": lighting_time,
328
- "camera_angle": camera_angle,
329
- "remove_objects": remove_objects,
330
- "renovation_instructions": renovation_instructions,
331
- }
332
- # Attach input data - simplistic approach for demo, REAL API would handle uploads better
333
- # Never send large files directly in JSON payload in production!
334
- # payload['input_data_b64'] = base64.b64encode(st.session_state.input_data_bytes).decode()
335
-
336
- job_id, error = submit_visualization_job(payload)
337
-
338
- if job_id:
339
- st.session_state.current_job_id = job_id
340
- st.session_state.job_status = "PENDING"
341
- st.session_state.ai_result_image = None # Clear previous result
342
- st.session_state.last_run_params = payload # Store params for display
343
- st.session_state.job_progress = {job_id: 0} # Reset progress for new job
344
- st.session_state.job_errors = {} # Clear old errors
345
- st.success(f"Job submitted successfully! Job ID: {job_id}")
346
- st.rerun() # Start polling
347
- else:
348
- st.error(f"Failed to submit job: {error}")
349
- st.session_state.current_job_id = None
350
- st.session_state.job_status = "FAILED" # Mark status
351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352
  else:
353
- st.info("⬆️ Upload a file to begin.")
354
-
355
- # --- Main Display Area ---
356
- col1, col2 = st.columns(2)
357
-
358
- with col1:
359
- st.subheader("Input")
360
- if st.session_state.input_type is not None:
361
- if st.session_state.input_type == 'image' and st.session_state.input_image_preview:
362
- st.image(st.session_state.input_image_preview, caption=f"Input: {st.session_state.uploaded_filename}", use_column_width=True)
363
- elif st.session_state.input_type != 'image':
364
- # Display info for non-image types
365
- st.info(f"{st.session_state.input_type.capitalize()} File:\n**{st.session_state.uploaded_filename}**")
366
- st.caption("(Preview not available for non-image inputs in this demo)")
367
- else:
368
- st.warning("Input loaded, but preview unavailable.")
369
- else:
370
- st.markdown("<div style='height: 400px; border: 2px dashed #ccc; ...'>Upload Input File</div>", unsafe_allow_html=True)
371
 
372
 
373
- with col2:
374
- st.subheader("AI Visualization Result")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375
 
376
- job_id = st.session_state.current_job_id
377
- status = st.session_state.job_status
378
 
379
- if job_id:
380
- # --- Job Status Display ---
381
- if status == "PENDING":
382
- st.info(f"Job Status: Pending... (ID: {job_id})")
383
- # Trigger periodic rerun for polling
384
- time.sleep(5) # Poll every 5 seconds (adjust as needed)
385
- st.rerun()
386
- elif status == "PROCESSING":
387
- progress_value = st.session_state.job_progress.get(job_id, 0)
388
- st.progress(min(progress_value, 1.0), text=f"Job Status: Processing... ({int(min(progress_value, 1.0)*100)}%) (ID: {job_id})")
389
- # Trigger periodic rerun for polling
390
- time.sleep(3) # Poll faster while processing
391
- st.rerun()
392
- elif status == "COMPLETED":
393
- st.success(f"Job Status: Completed! (ID: {job_id})")
394
- if st.session_state.ai_result_image:
395
- run_mode_display = st.session_state.last_run_params.get('output_mode', 'N/A').replace('_', ' ').title()
396
- st.image(st.session_state.ai_result_image, caption=f"Result ({run_mode_display})", use_column_width=True)
397
- # Download Button logic (similar to before)
398
- # ... (Add download button code here) ...
399
- else:
400
- st.error("Job completed, but failed to load the result image.")
401
- with st.expander("View Parameters Used", expanded=False):
402
- # Display JSON but remove potentially large data fields first
403
- params_to_display = {k:v for k,v in st.session_state.last_run_params.items()} # if k != 'input_data_b64'}
404
- st.json(params_to_display, expanded=True)
405
-
406
- elif status == "FAILED":
407
- error_msg = st.session_state.job_errors.get(job_id, "An unknown error occurred.")
408
- st.error(f"Job Status: Failed! (ID: {job_id})\nError: {error_msg}")
409
- with st.expander("View Parameters Used", expanded=False):
410
- params_to_display = {k:v for k,v in st.session_state.last_run_params.items()} # if k != 'input_data_b64'}
411
- st.json(params_to_display, expanded=True)
412
-
413
- # --- Logic to update status (if job is active) ---
414
- if status in ["PENDING", "PROCESSING"]:
415
- new_status, result_url, error = check_job_status(job_id)
416
- st.session_state.job_status = new_status
417
- if error:
418
- st.session_state.job_errors[job_id] = error
419
- if new_status == "COMPLETED" and result_url:
420
- # Fetch the result image only when completed
421
- st.session_state.ai_result_image = fetch_result_image(result_url)
422
- if st.session_state.ai_result_image is None:
423
- st.session_state.job_status = "FAILED" # Mark as failed if image fetch fails
424
- st.session_state.job_errors[job_id] = "Failed to retrieve/load result image."
425
- elif new_status == "FAILED" and not error: # If status is failed but no error stored yet
426
- st.session_state.job_errors[job_id] = "Job failed for an unknown reason."
427
-
428
- # Rerun immediately if status changed significantly to update UI
429
- if status != new_status and new_status in ["COMPLETED", "FAILED"]:
430
- st.rerun()
431
-
432
- else: # No active job
433
- st.markdown("<div style='height: 400px; border: 2px dashed #ccc; ...'>Result will appear here</div>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434
 
435
 
 
436
  st.markdown("---")
437
  st.warning("""
438
- **Disclaimer:** This is a **conceptual blueprint** for a production front-end.
439
- User authentication is **not secure**. Backend API calls, job handling, status polling, and AI processing are **simulated**.
440
- Building the actual backend infrastructure and state-of-the-art AI models requires significant resources and expertise.
441
  """)
 
1
+ # advanced_archsketch_app.py
2
+ import os
3
  import streamlit as st
4
+ from streamlit_drawable_canvas import st_canvas
5
+ from PIL import Image, ImageDraw, ImageFont, UnidentifiedImageError
6
+ import requests # For potential real API calls later
7
+ import openai # Used notionally
8
+ from io import BytesIO
9
+ import json
10
+ import uuid
11
  import time
 
12
  import random
13
+ import base64 # For potential image encoding if needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ # ─── 1. Configuration & Secrets ─────────────────────────────────────────────
16
+ try:
17
+ openai.api_key = st.secrets["OPENAI_API_KEY"]
18
+ except Exception:
19
+ st.error("OpenAI API Key not found. Please set it in Streamlit secrets.")
20
+ # openai.api_key = "YOUR_FALLBACK_KEY_FOR_LOCAL_TESTING" # Or load from env
21
 
22
+ st.set_page_config(page_title="ArchSketch AI [Advanced]", layout="wide", page_icon="πŸ—οΈ")
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ # --- Simulated Backend API Endpoints ---
25
+ # Replace with your actual endpoints if building a real backend
26
+ API_SUBMIT_URL = "http://your-backend.com/api/v1/submit_arch_job"
27
+ API_STATUS_URL = "http://your-backend.com/api/v1/job_status/{job_id}"
28
+ API_RESULT_URL = "http://your-backend.com/api/v1/job_result/{job_id}" # Might return data directly or a URL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ # ─── 2. State Initialization & Authentication ───────────────────────────────
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
 
 
 
32
  def initialize_state():
33
+ """Initializes all necessary session state variables."""
34
  defaults = {
35
  'logged_in': False,
36
  'username': None,
 
 
 
 
37
  'current_job_id': None,
38
+ 'job_status': 'IDLE', # IDLE, SUBMITTED, PENDING, PROCESSING, COMPLETED, FAILED
39
+ 'job_progress': {}, # Progress dict per job_id
40
+ 'job_errors': {}, # Error dict per job_id
41
+ 'job_results': {}, # Stores result data/references per job_id {job_id: {'type': 'image'/'svg'/'json', 'data': path_or_data, 'params':{...}, 'prompt': '...'}}
42
+ 'selected_history_job_id': None,
43
+ 'annotations': {}, # {job_id: [annotation_objects]}
44
+ # Input specific state
45
+ 'input_prompt': "",
46
+ 'input_staging_image_bytes': None,
47
+ 'input_staging_image_preview': None,
48
+ 'input_filename': None, # Store filename of uploaded staging image
49
  }
50
  for key, value in defaults.items():
51
  if key not in st.session_state:
 
53
 
54
  initialize_state()
55
 
56
+ def show_login_form():
57
+ """Displays the login form."""
58
+ st.warning("Login Required")
59
+ with st.form("login_form"):
60
+ username = st.text_input("Username", key="login_user")
61
+ password = st.text_input("Password", type="password", key="login_pass")
62
+ submitted = st.form_submit_button("Login")
63
+ if submitted:
64
+ # --- !!! INSECURE - DEMO ONLY !!! ---
65
+ if username == "arch_user" and password == "pass123":
66
+ st.session_state.logged_in = True
67
+ st.session_state.username = username
68
+ st.success("Login successful!")
69
+ time.sleep(1)
70
+ st.rerun()
71
+ else:
72
+ st.error("Invalid credentials.")
73
 
74
  # --- Authentication Gate ---
75
  if not st.session_state.logged_in:
76
  show_login_form()
77
+ st.stop()
78
 
79
+ # ─── 3. Simulated Backend Interaction Functions ───────────────────────────────
 
 
 
80
 
81
+ def submit_job_to_backend(payload: dict) -> tuple[str | None, str | None]:
82
+ """Simulates submitting job, returns (job_id, error)."""
83
+ st.info("Submitting job to backend simulation...")
84
+ print(f"SIMULATING API SUBMIT to {API_SUBMIT_URL}")
85
+ # In reality: response = requests.post(API_SUBMIT_URL, json=payload, headers=auth_headers)
86
+ time.sleep(1.5) # Simulate network + queue time
87
+ if random.random() < 0.95:
88
+ job_id = f"archjob_{uuid.uuid4().hex[:12]}"
89
+ print(f"API Submit SUCCESS: Job ID = {job_id}")
90
+ st.session_state.job_progress[job_id] = 0
91
+ st.session_state.job_errors[job_id] = None
92
+ # Store essential info with job immediately
93
+ st.session_state.job_results[job_id] = {
94
+ 'type': None, 'data': None, # Will be filled on completion
95
+ 'params': payload.get('parameters', {}), # Store settings used
96
+ 'prompt': payload.get('prompt', '')
97
+ }
98
+ return job_id, None
99
+ else:
100
+ error_msg = "Simulated API Error: Failed to submit (server busy/invalid payload)."
101
+ print(f"API Submit FAILED: {error_msg}")
102
+ return None, error_msg
103
+
104
+ def check_job_status_backend(job_id: str) -> tuple[str, dict | None]:
105
+ """Simulates checking job status, returns (status, result_info | None)."""
106
+ status_url = API_STATUS_URL.format(job_id=job_id)
107
+ print(f"SIMULATING API STATUS CHECK: {status_url}")
108
+ # In reality: response = requests.get(status_url, headers=auth_headers)
109
+ time.sleep(0.7) # Simulate network latency
110
+
111
+ if job_id not in st.session_state.job_progress:
112
+ st.session_state.job_progress[job_id] = 0
113
+
114
+ current_progress = st.session_state.job_progress[job_id]
115
+ status = "UNKNOWN"
116
+ result_info = None
117
+
118
+ # Simulate progress and potential states
119
+ if current_progress < 0.1:
120
+ status = "PENDING"
121
+ st.session_state.job_progress[job_id] += random.uniform(0.05, 0.15)
122
+ elif current_progress < 0.9:
123
+ status = "PROCESSING"
124
+ st.session_state.job_progress[job_id] += random.uniform(0.1, 0.3)
125
+ # Simulate potential failure during processing
126
+ if random.random() < 0.03: # 3% chance of failure mid-run
127
+ status = "FAILED"
128
+ st.session_state.job_errors[job_id] = "Simulated AI failure during processing."
129
+ print(f"API Status SIMULATION: Job {job_id} FAILED processing.")
130
+ elif current_progress >= 0.9: # Consider it done
131
+ status = "COMPLETED"
132
+ print(f"API Status SIMULATION: Job {job_id} COMPLETED.")
133
+ # Determine simulated result type based on original request stored in job_results
134
+ job_mode = st.session_state.job_results.get(job_id, {}).get('params', {}).get('mode', 'Unknown')
135
+
136
+ if job_mode == "Floor Plan":
137
+ # Simulate returning path to an SVG or structured JSON data
138
+ placeholder_path = "assets/placeholder_floorplan.svg" # Need this file
139
+ if not os.path.exists(placeholder_path): placeholder_path = "assets/placeholder_floorplan.json" # Fallback - need JSON too
140
+ result_info = {'type': 'svg' if '.svg' in placeholder_path else 'json', 'data_path': placeholder_path}
141
+ else: # Virtual Staging
142
+ placeholder_path = "assets/placeholder_image.png" # Need this file
143
+ result_info = {'type': 'image', 'data_path': placeholder_path}
144
+
145
+ print(f"API Status SIMULATION: Job {job_id} Status={status}, Progress={st.session_state.job_progress.get(job_id, 0):.2f}")
146
+ return status, result_info
147
+
148
+ def fetch_result_data(result_info: dict):
149
+ """Simulates fetching/loading result data based on info from status check."""
150
+ result_type = result_info['type']
151
+ data_path = result_info['data_path'] # In real app, might be URL
152
+ print(f"SIMULATING Fetching {result_type} result from: {data_path}")
153
+ # In reality: if URL, use requests.get(data_path).content
154
+
155
+ if not os.path.exists(data_path):
156
+ print(f"ERROR: Result placeholder not found at {data_path}")
157
+ raise FileNotFoundError(f"Result file missing: {data_path}")
158
+
159
+ try:
160
+ if result_type == 'image':
161
+ img = Image.open(data_path).convert("RGB")
162
+ return img
163
+ elif result_type == 'svg':
164
+ with open(data_path, 'r', encoding='utf-8') as f:
165
+ svg_content = f.read()
166
+ return svg_content # Return raw SVG string
167
+ elif result_type == 'json':
168
+ with open(data_path, 'r', encoding='utf-8') as f:
169
+ json_data = json.load(f)
170
+ return json_data # Return parsed JSON
171
+ else:
172
+ raise ValueError(f"Unsupported result type: {result_type}")
173
+ except Exception as e:
174
+ print(f"ERROR loading result from {data_path}: {e}")
175
+ raise
176
+
177
+ # ─── 4. Sidebar UI ───────────────────────────────────────────────────────────
178
  with st.sidebar:
179
+ st.header(f"πŸ—οΈ ArchSketch AI")
180
  st.caption(f"User: {st.session_state.username}")
181
+ if st.button("Logout", key="logout_btn"):
182
+ # Clear sensitive parts of state, re-initialize others
183
+ keys_to_clear = list(st.session_state.keys())
184
+ for key in keys_to_clear:
185
  del st.session_state[key]
186
+ initialize_state()
187
  st.rerun()
188
+ st.markdown("---")
189
+
190
+ st.header("βš™οΈ Project Configuration")
191
+
192
+ # Disable controls while job is active
193
+ ui_disabled = st.session_state.job_status in ["SUBMITTED", "PENDING", "PROCESSING"]
194
+
195
+ mode = st.radio("Mode", ["Floor Plan", "Virtual Staging"], key="mode_radio", disabled=ui_disabled)
196
+
197
+ # --- Conditional Input for Staging ---
198
+ if mode == "Virtual Staging":
199
+ staging_image_file = st.file_uploader(
200
+ "Upload Empty Room Image:",
201
+ type=["png", "jpg", "jpeg", "webp"],
202
+ key="staging_uploader",
203
+ disabled=ui_disabled,
204
+ help="Required for Virtual Staging mode."
205
+ )
206
+ if staging_image_file:
207
+ if staging_image_file.name != st.session_state.input_filename: # Detect new upload
208
+ st.info("Processing staging image...")
209
+ try:
210
+ img_bytes = staging_image_file.getvalue()
211
+ image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
212
+ image.thumbnail((1024, 1024), Image.Resampling.LANCZOS) # Resize preview
213
+ st.session_state.input_staging_image_bytes = img_bytes # Store bytes for API
214
+ st.session_state.input_staging_image_preview = image
215
+ st.session_state.input_filename = staging_image_file.name
216
+ st.success("Staging image loaded.")
217
+ # Don't rerun here, let user configure other options
218
+ except UnidentifiedImageError:
219
+ st.error("Invalid image file.")
220
+ st.session_state.input_staging_image_bytes = None
221
+ st.session_state.input_staging_image_preview = None
222
+ st.session_state.input_filename = None
223
+ except Exception as e:
224
+ st.error(f"Error loading image: {e}")
225
+ st.session_state.input_staging_image_bytes = None
226
+ st.session_state.input_staging_image_preview = None
227
+ st.session_state.input_filename = None
228
+
229
+ elif st.session_state.input_filename: # User cleared the uploader
230
+ st.session_state.input_staging_image_bytes = None
231
+ st.session_state.input_staging_image_preview = None
232
+ st.session_state.input_filename = None
233
+
234
 
235
  st.markdown("---")
236
+ st.header("✨ AI Parameters")
237
+ # Note: Different models might be chosen by the backend based on mode/style
238
+ model_hint = st.selectbox("Model Preference (Hint for Backend)", ["Auto", "GPT‑4o (Text/Layout)", "Stable Diffusion (Image Gen)", "ControlNet (Editing)"], key="model_select", disabled=ui_disabled)
239
+ style = st.selectbox("Style Preset", ["Modern", "Minimalist", "Rustic", "Industrial", "Coastal", "Custom"], key="style_select", disabled=ui_disabled)
240
+ resolution = st.select_slider("Target Resolution (Approx.)", options=[512, 768, 1024], value=768, key="res_slider", disabled=ui_disabled)
241
+
242
+ with st.expander("Optional Metadata"):
243
+ project_id = st.text_input("Project ID", key="proj_id_input", disabled=ui_disabled)
244
+ location = st.text_input("Location / Address", key="loc_input", disabled=ui_disabled)
245
+ client_notes = st.text_area("Client Notes", key="notes_area", disabled=ui_disabled)
246
+
247
+ # ─── 5. Main Area UI ─────────────────────────────────────────────────────────
248
+
249
+ st.title("Advanced AI Architectural Visualizer")
250
+
251
+ # --- Prompt Input Area ---
252
+ st.subheader("πŸ“ Describe Your Request")
253
+ prompt_text = st.text_area(
254
+ "Enter detailed prompt:",
255
+ placeholder=(
256
+ "Floor Plan Example: 'Generate a detailed 2D floor plan SVG for a 4-bedroom modern farmhouse, approx 2500 sq ft, main floor master suite, large open concept kitchen/living area, separate office, mudroom entrance.'\n"
257
+ "Staging Example: 'Virtually stage the uploaded living room image in a minimalist Scandinavian style. Include a light grey sectional sofa, a geometric rug, light wood coffee table, and several potted plants. Ensure bright, natural lighting.'"
258
+ ),
259
+ height=150,
260
+ key="prompt_input",
261
+ disabled=ui_disabled # Disable if job running
262
+ )
263
+ st.session_state.input_prompt = prompt_text # Keep state updated
264
+
265
+ # --- Submit Button ---
266
+ can_submit = bool(st.session_state.input_prompt.strip())
267
+ if mode == "Virtual Staging":
268
+ can_submit = can_submit and (st.session_state.input_staging_image_bytes is not None)
269
+
270
+ submit_button = st.button(
271
+ "πŸš€ Submit Visualization Job",
272
+ key="submit_btn",
273
+ use_container_width=True,
274
+ disabled=ui_disabled or not can_submit,
275
+ help="Requires a prompt. Staging mode also requires an uploaded image."
276
+ )
277
 
278
+ if not can_submit and not ui_disabled:
279
+ if mode == "Virtual Staging" and not st.session_state.input_staging_image_bytes:
280
+ st.warning("Please upload an image for Virtual Staging mode.")
281
+ elif not st.session_state.input_prompt.strip():
282
+ st.warning("Please enter a prompt describing your request.")
283
+
284
+
285
+ # --- Job Submission Logic ---
286
+ if submit_button:
287
+ st.session_state.job_status = "SUBMITTED"
288
+ st.session_state.current_job_id = None # Clear old ID before new submission attempt
289
+ st.session_state.ai_result_image = None # Clear old result display
290
+
291
+ # Prepare Payload
292
+ api_payload = {
293
+ "prompt": st.session_state.input_prompt,
294
+ "parameters": {
295
+ "mode": mode,
296
+ "model_preference": model_hint,
297
+ "style": style,
298
+ "resolution": resolution,
299
+ "project_id": project_id,
300
+ "location": location,
301
+ "client_notes": client_notes,
302
+ },
303
+ "user_id": st.session_state.username,
304
+ }
305
 
306
+ # Add image data for staging mode (handle carefully in production!)
307
+ if mode == "Virtual Staging" and st.session_state.input_staging_image_bytes:
308
+ # Option 1: Send as base64 (simpler for demo, BAD for large files)
309
+ api_payload["base_image_b64"] = base64.b64encode(st.session_state.input_staging_image_bytes).decode('utf-8')
310
+ api_payload["base_image_filename"] = st.session_state.input_filename
311
+ # Option 2 (Production): Upload to S3/GCS first, send URL/key
312
+ # api_payload["base_image_url"] = "s3://bucket/path/to/uploaded_image.jpg"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313
 
314
+ job_id, error = submit_job_to_backend(api_payload)
315
+
316
+ if job_id:
317
+ st.session_state.current_job_id = job_id
318
+ st.session_state.job_status = "PENDING" # Move to pending after successful submit
319
+ st.session_state.selected_history_job_id = job_id # Auto-select the new job
320
+ # Store params with result structure immediately
321
+ if job_id in st.session_state.job_results:
322
+ st.session_state.job_results[job_id]['params'] = api_payload['parameters']
323
+ st.session_state.job_results[job_id]['prompt'] = api_payload['prompt']
324
+
325
+ st.success(f"Job submitted! ID: {job_id}. Status will update below.")
326
+ st.rerun() # Start the polling loop
327
  else:
328
+ st.error(f"Job submission failed: {error}")
329
+ st.session_state.job_status = "FAILED"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
 
331
 
332
+ # --- Status & Result Display Area ---
333
+ st.markdown("---")
334
+ st.subheader("πŸ“Š Job Status & Result")
335
+
336
+ current_job_id = st.session_state.current_job_id
337
+ status = st.session_state.job_status
338
+
339
+ if not current_job_id:
340
+ st.info("Submit a job using the controls above.")
341
+ else:
342
+ # Display status updates
343
+ if status == "SUBMITTED":
344
+ st.warning(f"Job Status: Submitted... Waiting for confirmation (ID: {current_job_id})")
345
+ time.sleep(2) # Short delay before first poll
346
+ st.rerun()
347
+ elif status == "PENDING":
348
+ st.info(f"Job Status: Pending in queue... (ID: {current_job_id})")
349
+ time.sleep(5) # Poll interval
350
+ st.rerun()
351
+ elif status == "PROCESSING":
352
+ progress = st.session_state.job_progress.get(current_job_id, 0)
353
+ st.progress(min(progress, 1.0), text=f"Job Status: Processing... ({int(min(progress,1.0)*100)}%) (ID: {current_job_id})")
354
+ time.sleep(3) # Poll interval during processing
355
+ st.rerun()
356
+ elif status == "COMPLETED":
357
+ st.success(f"Job Status: Completed! (ID: {current_job_id})")
358
+ # Result display handled below in results/history section
359
+ elif status == "FAILED":
360
+ error_msg = st.session_state.job_errors.get(current_job_id, "Unknown error")
361
+ st.error(f"Job Status: Failed! (ID: {current_job_id}) - Error: {error_msg}")
362
+ elif status == "IDLE":
363
+ st.info("Submit a job to see status.")
364
+ else: # Should not happen
365
+ st.error(f"Unknown Job Status: {status}")
366
+
367
+ # --- Status Update Logic (if job is active) ---
368
+ if status in ["SUBMITTED", "PENDING", "PROCESSING"]:
369
+ new_status, result_info = check_job_status_backend(current_job_id)
370
+ st.session_state.job_status = new_status
371
+
372
+ if new_status == "COMPLETED" and result_info:
373
+ try:
374
+ result_data = fetch_result_data(result_info)
375
+ # Store result data associated with job_id
376
+ st.session_state.job_results[current_job_id]['type'] = result_info['type']
377
+ st.session_state.job_results[current_job_id]['data'] = result_data
378
+ st.session_state.selected_history_job_id = current_job_id # Ensure completed job is selected
379
+ st.rerun() # Rerun to display result
380
+ except Exception as e:
381
+ st.error(f"Failed to load result data: {e}")
382
+ st.session_state.job_status = "FAILED"
383
+ st.session_state.job_errors[current_job_id] = f"Failed to load result: {e}"
384
+ st.rerun()
385
+ elif new_status == "FAILED":
386
+ if not st.session_state.job_errors.get(current_job_id):
387
+ st.session_state.job_errors[current_job_id] = "Job failed during processing (unknown reason)."
388
+ st.rerun() # Rerun to show failed status
389
 
 
 
390
 
391
+ # --- Result Display / History / Annotation Area ---
392
+ st.markdown("---")
393
+ col_results, col_history = st.columns([3, 1]) # Main area for result, smaller sidebar for history
394
+
395
+ with col_history:
396
+ st.subheader("πŸ“š History")
397
+ if not st.session_state.job_results:
398
+ st.caption("No jobs run yet in this session.")
399
+ else:
400
+ # Display history items (most recent first)
401
+ sorted_job_ids = sorted(st.session_state.job_results.keys(), reverse=True)
402
+ for job_id in sorted_job_ids:
403
+ job_info = st.session_state.job_results[job_id]
404
+ prompt_short = job_info.get('prompt', 'No Prompt')[:40] + "..." if len(job_info.get('prompt', '')) > 40 else job_info.get('prompt', 'No Prompt')
405
+ mode_display = job_info.get('params',{}).get('mode', '?')
406
+ item_label = f"[{mode_display}] {prompt_short}"
407
+
408
+ # Use button to select history item
409
+ if st.button(item_label, key=f"history_{job_id}", use_container_width=True,
410
+ help=f"View result for Job ID: {job_id}\nPrompt: {job_info.get('prompt', '')}"):
411
+ st.session_state.selected_history_job_id = job_id
412
+ st.rerun() # Rerun to update the main display
413
+
414
+ if st.session_state.job_results:
415
+ st.download_button(
416
+ "⬇️ Export History (JSON)",
417
+ data=json.dumps(st.session_state.job_results, indent=2, default=str), # Default=str for non-serializable
418
+ file_name="archsketch_history.json",
419
+ mime="application/json"
420
+ )
421
+
422
+
423
+ with col_results:
424
+ selected_job_id = st.session_state.selected_history_job_id
425
+ if not selected_job_id or selected_job_id not in st.session_state.job_results:
426
+ st.info("Select a job from the history panel to view details and annotate.")
427
+ else:
428
+ result_info = st.session_state.job_results[selected_job_id]
429
+ result_type = result_info.get('type')
430
+ result_data = result_info.get('data')
431
+ result_params = result_info.get('params', {})
432
+ result_prompt = result_info.get('prompt', 'N/A')
433
+
434
+ st.subheader(f"πŸ” Viewing Result: {selected_job_id}")
435
+ st.caption(f"**Mode:** {result_params.get('mode', 'N/A')} | **Style:** {result_params.get('style', 'N/A')}")
436
+ st.markdown(f"**Prompt:** *{result_prompt}*")
437
+
438
+ display_image = None # Image to use for canvas background
439
+
440
+ if result_type == 'image' and isinstance(result_data, Image.Image):
441
+ st.image(result_data, caption="Generated Visualization", use_column_width=True)
442
+ display_image = result_data
443
+ # Add image download button
444
+ buf = BytesIO(); result_data.save(buf, format="PNG")
445
+ st.download_button("⬇️ Download Image (PNG)", buf.getvalue(), f"{selected_job_id}_result.png", "image/png")
446
+
447
+ elif result_type == 'svg' and isinstance(result_data, str):
448
+ st.image(result_data, caption="Generated Floor Plan (SVG)", use_column_width=True)
449
+ # SVG Download
450
+ st.download_button("⬇️ Download SVG", result_data, f"{selected_job_id}_floorplan.svg", "image/svg+xml")
451
+ # Cannot easily use SVG as canvas background directly - maybe render SVG to PNG first?
452
+ st.warning("Annotation on SVG is not directly supported in this demo. Showing base image if available.")
453
+ # If staging mode produced SVG somehow (unlikely), use the input image for annotation context
454
+ if result_params.get('mode') == 'Virtual Staging' and st.session_state.input_staging_image_preview:
455
+ display_image = st.session_state.input_staging_image_preview
456
+
457
+ elif result_type == 'json' and isinstance(result_data, dict):
458
+ st.json(result_data, expanded=False)
459
+ st.caption("Generated Structured Data (JSON)")
460
+ # JSON Download
461
+ st.download_button("⬇️ Download JSON", json.dumps(result_data, indent=2), f"{selected_job_id}_data.json", "application/json")
462
+ st.warning("Annotation not applicable for JSON results. Showing base image if available.")
463
+ if result_params.get('mode') == 'Virtual Staging' and st.session_state.input_staging_image_preview:
464
+ display_image = st.session_state.input_staging_image_preview
465
+ elif result_data is None:
466
+ st.warning("Result data is not available for this job (may still be processing or failed).")
467
+ else:
468
+ st.error("Result type or data is invalid.")
469
+
470
+
471
+ # --- Annotation Canvas ---
472
+ if display_image:
473
+ st.markdown("---")
474
+ st.subheader("✏️ Annotate / Edit")
475
+ # Load existing annotations for this job_id if they exist
476
+ initial_drawing = {"objects": st.session_state.annotations.get(selected_job_id, [])}
477
+
478
+ canvas = st_canvas(
479
+ fill_color="rgba(255, 0, 0, 0.2)", # Red annotation
480
+ stroke_width=3,
481
+ stroke_color="#FF0000",
482
+ background_image=display_image,
483
+ update_streamlit=[" Mosul", "mouseup"], # Update on drawing release
484
+ height=500, # Adjust height as needed
485
+ width=700, # Adjust width as needed
486
+ drawing_mode=st.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"), key=f"draw_mode_{selected_job_id}"),
487
+ key=f"canvas_{selected_job_id}" # Key tied to job ID
488
+ # Removed initial_drawing for simplicity now, add back if needed carefully
489
+ )
490
+
491
+ # Save annotations when canvas updates
492
+ if canvas.json_data is not None and canvas.json_data["objects"]:
493
+ st.session_state.annotations[selected_job_id] = canvas.json_data["objects"]
494
+
495
+ # Display current annotations (optional) & Export
496
+ current_annotations = st.session_state.annotations.get(selected_job_id)
497
+ if current_annotations:
498
+ with st.expander("View/Export Current Annotations (JSON)"):
499
+ st.json(current_annotations)
500
+ st.download_button(
501
+ "⬇️ Export Annotations",
502
+ data=json.dumps({selected_job_id: current_annotations}, indent=2),
503
+ file_name=f"{selected_job_id}_annotations.json",
504
+ mime="application/json"
505
+ )
506
+ else:
507
+ st.caption("Annotation requires a viewable image result.")
508
 
509
 
510
+ # ─── Footer & Disclaimer ─────────────────────────────────────────────────────
511
  st.markdown("---")
512
  st.warning("""
513
+ **Disclaimer:** This is an **advanced conceptual blueprint**. User authentication is **not secure**.
514
+ Backend API calls, asynchronous job handling, status polling, AI model execution (image generation, floor plan logic, staging),
515
+ and result data fetching are **simulated**. Building the real backend requires substantial AI and infrastructure expertise.
516
  """)