Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,516 +1,383 @@
|
|
1 |
-
# advanced_archsketch_app.py
|
2 |
-
import os
|
3 |
import streamlit as st
|
4 |
-
|
5 |
-
|
6 |
-
import
|
7 |
-
import openai # Used notionally
|
8 |
-
from io import BytesIO
|
9 |
import json
|
10 |
-
import
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
try:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# Replace with your actual endpoints if building a real backend
|
26 |
-
API_SUBMIT_URL = "http://your-backend.com/api/v1/submit_arch_job"
|
27 |
-
API_STATUS_URL = "http://your-backend.com/api/v1/job_status/{job_id}"
|
28 |
-
API_RESULT_URL = "http://your-backend.com/api/v1/job_result/{job_id}" # Might return data directly or a URL
|
29 |
-
|
30 |
-
# βββ 2. State Initialization & Authentication βββββββββββββββββββββββββββββββ
|
31 |
-
|
32 |
-
def initialize_state():
|
33 |
-
"""Initializes all necessary session state variables."""
|
34 |
-
defaults = {
|
35 |
-
'logged_in': False,
|
36 |
-
'username': None,
|
37 |
-
'current_job_id': None,
|
38 |
-
'job_status': 'IDLE', # IDLE, SUBMITTED, PENDING, PROCESSING, COMPLETED, FAILED
|
39 |
-
'job_progress': {}, # Progress dict per job_id
|
40 |
-
'job_errors': {}, # Error dict per job_id
|
41 |
-
'job_results': {}, # Stores result data/references per job_id {job_id: {'type': 'image'/'svg'/'json', 'data': path_or_data, 'params':{...}, 'prompt': '...'}}
|
42 |
-
'selected_history_job_id': None,
|
43 |
-
'annotations': {}, # {job_id: [annotation_objects]}
|
44 |
-
# Input specific state
|
45 |
-
'input_prompt': "",
|
46 |
-
'input_staging_image_bytes': None,
|
47 |
-
'input_staging_image_preview': None,
|
48 |
-
'input_filename': None, # Store filename of uploaded staging image
|
49 |
-
}
|
50 |
-
for key, value in defaults.items():
|
51 |
-
if key not in st.session_state:
|
52 |
-
st.session_state[key] = value
|
53 |
-
|
54 |
-
initialize_state()
|
55 |
-
|
56 |
-
def show_login_form():
|
57 |
-
"""Displays the login form."""
|
58 |
-
st.warning("Login Required")
|
59 |
-
with st.form("login_form"):
|
60 |
-
username = st.text_input("Username", key="login_user")
|
61 |
-
password = st.text_input("Password", type="password", key="login_pass")
|
62 |
-
submitted = st.form_submit_button("Login")
|
63 |
-
if submitted:
|
64 |
-
# --- !!! INSECURE - DEMO ONLY !!! ---
|
65 |
-
if username == "arch_user" and password == "pass123":
|
66 |
-
st.session_state.logged_in = True
|
67 |
-
st.session_state.username = username
|
68 |
-
st.success("Login successful!")
|
69 |
-
time.sleep(1)
|
70 |
-
st.rerun()
|
71 |
-
else:
|
72 |
-
st.error("Invalid credentials.")
|
73 |
-
|
74 |
-
# --- Authentication Gate ---
|
75 |
-
if not st.session_state.logged_in:
|
76 |
-
show_login_form()
|
77 |
st.stop()
|
78 |
|
79 |
-
#
|
80 |
-
|
81 |
-
def
|
82 |
-
"""
|
83 |
-
|
84 |
-
print(f"SIMULATING API SUBMIT to {API_SUBMIT_URL}")
|
85 |
-
# In reality: response = requests.post(API_SUBMIT_URL, json=payload, headers=auth_headers)
|
86 |
-
time.sleep(1.5) # Simulate network + queue time
|
87 |
-
if random.random() < 0.95:
|
88 |
-
job_id = f"archjob_{uuid.uuid4().hex[:12]}"
|
89 |
-
print(f"API Submit SUCCESS: Job ID = {job_id}")
|
90 |
-
st.session_state.job_progress[job_id] = 0
|
91 |
-
st.session_state.job_errors[job_id] = None
|
92 |
-
# Store essential info with job immediately
|
93 |
-
st.session_state.job_results[job_id] = {
|
94 |
-
'type': None, 'data': None, # Will be filled on completion
|
95 |
-
'params': payload.get('parameters', {}), # Store settings used
|
96 |
-
'prompt': payload.get('prompt', '')
|
97 |
-
}
|
98 |
-
return job_id, None
|
99 |
-
else:
|
100 |
-
error_msg = "Simulated API Error: Failed to submit (server busy/invalid payload)."
|
101 |
-
print(f"API Submit FAILED: {error_msg}")
|
102 |
-
return None, error_msg
|
103 |
|
104 |
-
def
|
105 |
-
"""
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
if job_id not in st.session_state.job_progress:
|
112 |
-
st.session_state.job_progress[job_id] = 0
|
113 |
-
|
114 |
-
current_progress = st.session_state.job_progress[job_id]
|
115 |
-
status = "UNKNOWN"
|
116 |
-
result_info = None
|
117 |
-
|
118 |
-
# Simulate progress and potential states
|
119 |
-
if current_progress < 0.1:
|
120 |
-
status = "PENDING"
|
121 |
-
st.session_state.job_progress[job_id] += random.uniform(0.05, 0.15)
|
122 |
-
elif current_progress < 0.9:
|
123 |
-
status = "PROCESSING"
|
124 |
-
st.session_state.job_progress[job_id] += random.uniform(0.1, 0.3)
|
125 |
-
# Simulate potential failure during processing
|
126 |
-
if random.random() < 0.03: # 3% chance of failure mid-run
|
127 |
-
status = "FAILED"
|
128 |
-
st.session_state.job_errors[job_id] = "Simulated AI failure during processing."
|
129 |
-
print(f"API Status SIMULATION: Job {job_id} FAILED processing.")
|
130 |
-
elif current_progress >= 0.9: # Consider it done
|
131 |
-
status = "COMPLETED"
|
132 |
-
print(f"API Status SIMULATION: Job {job_id} COMPLETED.")
|
133 |
-
# Determine simulated result type based on original request stored in job_results
|
134 |
-
job_mode = st.session_state.job_results.get(job_id, {}).get('params', {}).get('mode', 'Unknown')
|
135 |
-
|
136 |
-
if job_mode == "Floor Plan":
|
137 |
-
# Simulate returning path to an SVG or structured JSON data
|
138 |
-
placeholder_path = "assets/placeholder_floorplan.svg" # Need this file
|
139 |
-
if not os.path.exists(placeholder_path): placeholder_path = "assets/placeholder_floorplan.json" # Fallback - need JSON too
|
140 |
-
result_info = {'type': 'svg' if '.svg' in placeholder_path else 'json', 'data_path': placeholder_path}
|
141 |
-
else: # Virtual Staging
|
142 |
-
placeholder_path = "assets/placeholder_image.png" # Need this file
|
143 |
-
result_info = {'type': 'image', 'data_path': placeholder_path}
|
144 |
-
|
145 |
-
print(f"API Status SIMULATION: Job {job_id} Status={status}, Progress={st.session_state.job_progress.get(job_id, 0):.2f}")
|
146 |
-
return status, result_info
|
147 |
-
|
148 |
-
def fetch_result_data(result_info: dict):
|
149 |
-
"""Simulates fetching/loading result data based on info from status check."""
|
150 |
-
result_type = result_info['type']
|
151 |
-
data_path = result_info['data_path'] # In real app, might be URL
|
152 |
-
print(f"SIMULATING Fetching {result_type} result from: {data_path}")
|
153 |
-
# In reality: if URL, use requests.get(data_path).content
|
154 |
-
|
155 |
-
if not os.path.exists(data_path):
|
156 |
-
print(f"ERROR: Result placeholder not found at {data_path}")
|
157 |
-
raise FileNotFoundError(f"Result file missing: {data_path}")
|
158 |
|
159 |
try:
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
except Exception as e:
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
"
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
)
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
st.
|
232 |
-
st.
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
st.
|
250 |
-
|
251 |
-
|
252 |
-
st.
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
)
|
|
|
277 |
|
278 |
-
if not can_submit and not ui_disabled:
|
279 |
-
if mode == "Virtual Staging" and not st.session_state.input_staging_image_bytes:
|
280 |
-
st.warning("Please upload an image for Virtual Staging mode.")
|
281 |
-
elif not st.session_state.input_prompt.strip():
|
282 |
-
st.warning("Please enter a prompt describing your request.")
|
283 |
-
|
284 |
-
|
285 |
-
# --- Job Submission Logic ---
|
286 |
-
if submit_button:
|
287 |
-
st.session_state.job_status = "SUBMITTED"
|
288 |
-
st.session_state.current_job_id = None # Clear old ID before new submission attempt
|
289 |
-
st.session_state.ai_result_image = None # Clear old result display
|
290 |
-
|
291 |
-
# Prepare Payload
|
292 |
-
api_payload = {
|
293 |
-
"prompt": st.session_state.input_prompt,
|
294 |
-
"parameters": {
|
295 |
-
"mode": mode,
|
296 |
-
"model_preference": model_hint,
|
297 |
-
"style": style,
|
298 |
-
"resolution": resolution,
|
299 |
-
"project_id": project_id,
|
300 |
-
"location": location,
|
301 |
-
"client_notes": client_notes,
|
302 |
-
},
|
303 |
-
"user_id": st.session_state.username,
|
304 |
-
}
|
305 |
-
|
306 |
-
# Add image data for staging mode (handle carefully in production!)
|
307 |
-
if mode == "Virtual Staging" and st.session_state.input_staging_image_bytes:
|
308 |
-
# Option 1: Send as base64 (simpler for demo, BAD for large files)
|
309 |
-
api_payload["base_image_b64"] = base64.b64encode(st.session_state.input_staging_image_bytes).decode('utf-8')
|
310 |
-
api_payload["base_image_filename"] = st.session_state.input_filename
|
311 |
-
# Option 2 (Production): Upload to S3/GCS first, send URL/key
|
312 |
-
# api_payload["base_image_url"] = "s3://bucket/path/to/uploaded_image.jpg"
|
313 |
-
|
314 |
-
job_id, error = submit_job_to_backend(api_payload)
|
315 |
-
|
316 |
-
if job_id:
|
317 |
-
st.session_state.current_job_id = job_id
|
318 |
-
st.session_state.job_status = "PENDING" # Move to pending after successful submit
|
319 |
-
st.session_state.selected_history_job_id = job_id # Auto-select the new job
|
320 |
-
# Store params with result structure immediately
|
321 |
-
if job_id in st.session_state.job_results:
|
322 |
-
st.session_state.job_results[job_id]['params'] = api_payload['parameters']
|
323 |
-
st.session_state.job_results[job_id]['prompt'] = api_payload['prompt']
|
324 |
-
|
325 |
-
st.success(f"Job submitted! ID: {job_id}. Status will update below.")
|
326 |
-
st.rerun() # Start the polling loop
|
327 |
-
else:
|
328 |
-
st.error(f"Job submission failed: {error}")
|
329 |
-
st.session_state.job_status = "FAILED"
|
330 |
|
|
|
|
|
331 |
|
332 |
-
|
333 |
-
st.
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
-
current_job_id = st.session_state.current_job_id
|
337 |
-
status = st.session_state.job_status
|
338 |
|
339 |
-
if not current_job_id:
|
340 |
-
st.info("Submit a job using the controls above.")
|
341 |
-
else:
|
342 |
-
# Display status updates
|
343 |
-
if status == "SUBMITTED":
|
344 |
-
st.warning(f"Job Status: Submitted... Waiting for confirmation (ID: {current_job_id})")
|
345 |
-
time.sleep(2) # Short delay before first poll
|
346 |
-
st.rerun()
|
347 |
-
elif status == "PENDING":
|
348 |
-
st.info(f"Job Status: Pending in queue... (ID: {current_job_id})")
|
349 |
-
time.sleep(5) # Poll interval
|
350 |
-
st.rerun()
|
351 |
-
elif status == "PROCESSING":
|
352 |
-
progress = st.session_state.job_progress.get(current_job_id, 0)
|
353 |
-
st.progress(min(progress, 1.0), text=f"Job Status: Processing... ({int(min(progress,1.0)*100)}%) (ID: {current_job_id})")
|
354 |
-
time.sleep(3) # Poll interval during processing
|
355 |
-
st.rerun()
|
356 |
-
elif status == "COMPLETED":
|
357 |
-
st.success(f"Job Status: Completed! (ID: {current_job_id})")
|
358 |
-
# Result display handled below in results/history section
|
359 |
-
elif status == "FAILED":
|
360 |
-
error_msg = st.session_state.job_errors.get(current_job_id, "Unknown error")
|
361 |
-
st.error(f"Job Status: Failed! (ID: {current_job_id}) - Error: {error_msg}")
|
362 |
-
elif status == "IDLE":
|
363 |
-
st.info("Submit a job to see status.")
|
364 |
-
else: # Should not happen
|
365 |
-
st.error(f"Unknown Job Status: {status}")
|
366 |
-
|
367 |
-
# --- Status Update Logic (if job is active) ---
|
368 |
-
if status in ["SUBMITTED", "PENDING", "PROCESSING"]:
|
369 |
-
new_status, result_info = check_job_status_backend(current_job_id)
|
370 |
-
st.session_state.job_status = new_status
|
371 |
-
|
372 |
-
if new_status == "COMPLETED" and result_info:
|
373 |
-
try:
|
374 |
-
result_data = fetch_result_data(result_info)
|
375 |
-
# Store result data associated with job_id
|
376 |
-
st.session_state.job_results[current_job_id]['type'] = result_info['type']
|
377 |
-
st.session_state.job_results[current_job_id]['data'] = result_data
|
378 |
-
st.session_state.selected_history_job_id = current_job_id # Ensure completed job is selected
|
379 |
-
st.rerun() # Rerun to display result
|
380 |
-
except Exception as e:
|
381 |
-
st.error(f"Failed to load result data: {e}")
|
382 |
-
st.session_state.job_status = "FAILED"
|
383 |
-
st.session_state.job_errors[current_job_id] = f"Failed to load result: {e}"
|
384 |
-
st.rerun()
|
385 |
-
elif new_status == "FAILED":
|
386 |
-
if not st.session_state.job_errors.get(current_job_id):
|
387 |
-
st.session_state.job_errors[current_job_id] = "Job failed during processing (unknown reason)."
|
388 |
-
st.rerun() # Rerun to show failed status
|
389 |
-
|
390 |
-
|
391 |
-
# --- Result Display / History / Annotation Area ---
|
392 |
-
st.markdown("---")
|
393 |
-
col_results, col_history = st.columns([3, 1]) # Main area for result, smaller sidebar for history
|
394 |
-
|
395 |
-
with col_history:
|
396 |
-
st.subheader("π History")
|
397 |
-
if not st.session_state.job_results:
|
398 |
-
st.caption("No jobs run yet in this session.")
|
399 |
-
else:
|
400 |
-
# Display history items (most recent first)
|
401 |
-
sorted_job_ids = sorted(st.session_state.job_results.keys(), reverse=True)
|
402 |
-
for job_id in sorted_job_ids:
|
403 |
-
job_info = st.session_state.job_results[job_id]
|
404 |
-
prompt_short = job_info.get('prompt', 'No Prompt')[:40] + "..." if len(job_info.get('prompt', '')) > 40 else job_info.get('prompt', 'No Prompt')
|
405 |
-
mode_display = job_info.get('params',{}).get('mode', '?')
|
406 |
-
item_label = f"[{mode_display}] {prompt_short}"
|
407 |
-
|
408 |
-
# Use button to select history item
|
409 |
-
if st.button(item_label, key=f"history_{job_id}", use_container_width=True,
|
410 |
-
help=f"View result for Job ID: {job_id}\nPrompt: {job_info.get('prompt', '')}"):
|
411 |
-
st.session_state.selected_history_job_id = job_id
|
412 |
-
st.rerun() # Rerun to update the main display
|
413 |
-
|
414 |
-
if st.session_state.job_results:
|
415 |
-
st.download_button(
|
416 |
-
"β¬οΈ Export History (JSON)",
|
417 |
-
data=json.dumps(st.session_state.job_results, indent=2, default=str), # Default=str for non-serializable
|
418 |
-
file_name="archsketch_history.json",
|
419 |
-
mime="application/json"
|
420 |
-
)
|
421 |
-
|
422 |
-
|
423 |
-
with col_results:
|
424 |
-
selected_job_id = st.session_state.selected_history_job_id
|
425 |
-
if not selected_job_id or selected_job_id not in st.session_state.job_results:
|
426 |
-
st.info("Select a job from the history panel to view details and annotate.")
|
427 |
else:
|
428 |
-
|
429 |
-
|
430 |
-
result_data = result_info.get('data')
|
431 |
-
result_params = result_info.get('params', {})
|
432 |
-
result_prompt = result_info.get('prompt', 'N/A')
|
433 |
-
|
434 |
-
st.subheader(f"π Viewing Result: {selected_job_id}")
|
435 |
-
st.caption(f"**Mode:** {result_params.get('mode', 'N/A')} | **Style:** {result_params.get('style', 'N/A')}")
|
436 |
-
st.markdown(f"**Prompt:** *{result_prompt}*")
|
437 |
-
|
438 |
-
display_image = None # Image to use for canvas background
|
439 |
-
|
440 |
-
if result_type == 'image' and isinstance(result_data, Image.Image):
|
441 |
-
st.image(result_data, caption="Generated Visualization", use_column_width=True)
|
442 |
-
display_image = result_data
|
443 |
-
# Add image download button
|
444 |
-
buf = BytesIO(); result_data.save(buf, format="PNG")
|
445 |
-
st.download_button("β¬οΈ Download Image (PNG)", buf.getvalue(), f"{selected_job_id}_result.png", "image/png")
|
446 |
-
|
447 |
-
elif result_type == 'svg' and isinstance(result_data, str):
|
448 |
-
st.image(result_data, caption="Generated Floor Plan (SVG)", use_column_width=True)
|
449 |
-
# SVG Download
|
450 |
-
st.download_button("β¬οΈ Download SVG", result_data, f"{selected_job_id}_floorplan.svg", "image/svg+xml")
|
451 |
-
# Cannot easily use SVG as canvas background directly - maybe render SVG to PNG first?
|
452 |
-
st.warning("Annotation on SVG is not directly supported in this demo. Showing base image if available.")
|
453 |
-
# If staging mode produced SVG somehow (unlikely), use the input image for annotation context
|
454 |
-
if result_params.get('mode') == 'Virtual Staging' and st.session_state.input_staging_image_preview:
|
455 |
-
display_image = st.session_state.input_staging_image_preview
|
456 |
-
|
457 |
-
elif result_type == 'json' and isinstance(result_data, dict):
|
458 |
-
st.json(result_data, expanded=False)
|
459 |
-
st.caption("Generated Structured Data (JSON)")
|
460 |
-
# JSON Download
|
461 |
-
st.download_button("β¬οΈ Download JSON", json.dumps(result_data, indent=2), f"{selected_job_id}_data.json", "application/json")
|
462 |
-
st.warning("Annotation not applicable for JSON results. Showing base image if available.")
|
463 |
-
if result_params.get('mode') == 'Virtual Staging' and st.session_state.input_staging_image_preview:
|
464 |
-
display_image = st.session_state.input_staging_image_preview
|
465 |
-
elif result_data is None:
|
466 |
-
st.warning("Result data is not available for this job (may still be processing or failed).")
|
467 |
-
else:
|
468 |
-
st.error("Result type or data is invalid.")
|
469 |
-
|
470 |
-
|
471 |
-
# --- Annotation Canvas ---
|
472 |
-
if display_image:
|
473 |
-
st.markdown("---")
|
474 |
-
st.subheader("βοΈ Annotate / Edit")
|
475 |
-
# Load existing annotations for this job_id if they exist
|
476 |
-
initial_drawing = {"objects": st.session_state.annotations.get(selected_job_id, [])}
|
477 |
-
|
478 |
-
canvas = st_canvas(
|
479 |
-
fill_color="rgba(255, 0, 0, 0.2)", # Red annotation
|
480 |
-
stroke_width=3,
|
481 |
-
stroke_color="#FF0000",
|
482 |
-
background_image=display_image,
|
483 |
-
update_streamlit=[" Mosul", "mouseup"], # Update on drawing release
|
484 |
-
height=500, # Adjust height as needed
|
485 |
-
width=700, # Adjust width as needed
|
486 |
-
drawing_mode=st.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"), key=f"draw_mode_{selected_job_id}"),
|
487 |
-
key=f"canvas_{selected_job_id}" # Key tied to job ID
|
488 |
-
# Removed initial_drawing for simplicity now, add back if needed carefully
|
489 |
-
)
|
490 |
-
|
491 |
-
# Save annotations when canvas updates
|
492 |
-
if canvas.json_data is not None and canvas.json_data["objects"]:
|
493 |
-
st.session_state.annotations[selected_job_id] = canvas.json_data["objects"]
|
494 |
-
|
495 |
-
# Display current annotations (optional) & Export
|
496 |
-
current_annotations = st.session_state.annotations.get(selected_job_id)
|
497 |
-
if current_annotations:
|
498 |
-
with st.expander("View/Export Current Annotations (JSON)"):
|
499 |
-
st.json(current_annotations)
|
500 |
-
st.download_button(
|
501 |
-
"β¬οΈ Export Annotations",
|
502 |
-
data=json.dumps({selected_job_id: current_annotations}, indent=2),
|
503 |
-
file_name=f"{selected_job_id}_annotations.json",
|
504 |
-
mime="application/json"
|
505 |
-
)
|
506 |
-
else:
|
507 |
-
st.caption("Annotation requires a viewable image result.")
|
508 |
|
|
|
|
|
509 |
|
510 |
-
|
511 |
-
st.markdown("
|
512 |
-
st.warning("""
|
513 |
-
**Disclaimer:** This is an **advanced conceptual blueprint**. User authentication is **not secure**.
|
514 |
-
Backend API calls, asynchronous job handling, status polling, AI model execution (image generation, floor plan logic, staging),
|
515 |
-
and result data fetching are **simulated**. Building the real backend requires substantial AI and infrastructure expertise.
|
516 |
-
""")
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import google.generativeai as genai
|
3 |
+
import zipfile
|
4 |
+
import io
|
|
|
|
|
5 |
import json
|
6 |
+
import os
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
# --- Configuration ---
|
10 |
+
GEMINI_MODEL_NAME = "gemini-2.5-pro-preview-03-25"
|
11 |
+
# Maximum estimated tokens to try fitting into a single prompt
|
12 |
+
# Adjust based on typical file sizes and Gemini limits/performance
|
13 |
+
# 1M tokens is roughly 4MB-5MB of text, but structure matters. Start lower.
|
14 |
+
MAX_PROMPT_TOKENS_ESTIMATE = 800000 # Be conservative initially
|
15 |
+
|
16 |
+
# Define the types of analysis available
|
17 |
+
AVAILABLE_ANALYSES = {
|
18 |
+
"generate_docs": "Generate Missing Docstrings/Comments",
|
19 |
+
"find_bugs": "Identify Potential Bugs & Anti-patterns",
|
20 |
+
"check_style": "Check Style Guide Compliance (General)",
|
21 |
+
"summarize_modules": "Summarize Complex Modules/Files",
|
22 |
+
"suggest_refactoring": "Suggest Refactoring Opportunities"
|
23 |
+
}
|
24 |
+
|
25 |
+
# Define common code file extensions to include
|
26 |
+
CODE_EXTENSIONS = {'.py', '.js', '.java', '.c', '.cpp', '.h', '.cs', '.go', '.rb', '.php', '.swift', '.kt', '.ts', '.html', '.css', '.scss', '.sql'}
|
27 |
+
|
28 |
+
# --- Gemini API Setup ---
|
29 |
try:
|
30 |
+
if 'GEMINI_API_KEY' not in st.secrets:
|
31 |
+
st.error("π¨ Gemini API Key not found. Add it to `.streamlit/secrets.toml`.")
|
32 |
+
st.stop()
|
33 |
+
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
|
34 |
+
model = genai.GenerativeModel(GEMINI_MODEL_NAME)
|
35 |
+
print("Gemini Model Initialized.")
|
36 |
+
except Exception as e:
|
37 |
+
st.error(f"π¨ Error initializing Gemini SDK: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
st.stop()
|
39 |
|
40 |
+
# --- Helper Functions ---
|
41 |
+
|
42 |
+
def estimate_token_count(text):
|
43 |
+
"""Roughly estimate token count (4 chars per token is a common rule of thumb)."""
|
44 |
+
return len(text) // 3 # Be generous here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
def process_zip_file(uploaded_file):
|
47 |
+
"""Extracts code files and their content from the uploaded zip file."""
|
48 |
+
code_files = {}
|
49 |
+
total_chars = 0
|
50 |
+
file_count = 0
|
51 |
+
ignored_files = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
try:
|
54 |
+
with zipfile.ZipFile(io.BytesIO(uploaded_file.getvalue()), 'r') as zip_ref:
|
55 |
+
for member in zip_ref.infolist():
|
56 |
+
# Skip directories and files in hidden folders like .git, __pycache__
|
57 |
+
if member.is_dir() or member.filename.startswith('.') or '__' in member.filename:
|
58 |
+
continue
|
59 |
+
|
60 |
+
file_path = Path(member.filename)
|
61 |
+
# Check if the file extension is in our allowed list
|
62 |
+
if file_path.suffix.lower() in CODE_EXTENSIONS:
|
63 |
+
try:
|
64 |
+
with zip_ref.open(member) as file:
|
65 |
+
# Decode defensively, try common encodings
|
66 |
+
try:
|
67 |
+
content = file.read().decode('utf-8')
|
68 |
+
except UnicodeDecodeError:
|
69 |
+
try:
|
70 |
+
content = file.read().decode('latin-1')
|
71 |
+
except Exception as decode_err:
|
72 |
+
ignored_files.append(f"{member.filename} (Decode Error: {decode_err})")
|
73 |
+
continue # Skip if undecodable
|
74 |
+
|
75 |
+
code_files[member.filename] = content
|
76 |
+
total_chars += len(content)
|
77 |
+
file_count += 1
|
78 |
+
except Exception as read_err:
|
79 |
+
ignored_files.append(f"{member.filename} (Read Error: {read_err})")
|
80 |
+
else:
|
81 |
+
ignored_files.append(f"{member.filename} (Skipped Extension: {file_path.suffix})")
|
82 |
+
|
83 |
+
except zipfile.BadZipFile:
|
84 |
+
st.error("π¨ Invalid or corrupted ZIP file.")
|
85 |
+
return None, 0, 0, []
|
86 |
except Exception as e:
|
87 |
+
st.error(f"π¨ Error processing ZIP file: {e}")
|
88 |
+
return None, 0, 0, []
|
89 |
+
|
90 |
+
return code_files, total_chars, file_count, ignored_files
|
91 |
+
|
92 |
+
def construct_analysis_prompt(code_files_dict, requested_analyses):
|
93 |
+
"""Constructs the prompt for Gemini, including code content and JSON structure request."""
|
94 |
+
prompt_content = "Analyze the following codebase provided as a collection of file paths and their content.\n\n"
|
95 |
+
current_token_estimate = estimate_token_count(prompt_content)
|
96 |
+
|
97 |
+
# Concatenate file content with markers
|
98 |
+
included_files = []
|
99 |
+
concatenated_code = ""
|
100 |
+
for filename, content in code_files_dict.items():
|
101 |
+
file_marker = f"--- START FILE: {filename} ---\n"
|
102 |
+
file_content = f"{content}\n"
|
103 |
+
file_end_marker = f"--- END FILE: {filename} ---\n\n"
|
104 |
+
segment = file_marker + file_content + file_end_marker
|
105 |
+
|
106 |
+
segment_token_estimate = estimate_token_count(segment)
|
107 |
+
|
108 |
+
if current_token_estimate + segment_token_estimate <= MAX_PROMPT_TOKENS_ESTIMATE:
|
109 |
+
concatenated_code += segment
|
110 |
+
current_token_estimate += segment_token_estimate
|
111 |
+
included_files.append(filename)
|
112 |
+
else:
|
113 |
+
st.warning(f"β οΈ Codebase likely exceeds context window estimate ({MAX_PROMPT_TOKENS_ESTIMATE} tokens). Analysis will be performed only on the first {len(included_files)} files ({current_token_estimate} tokens). Consider analyzing smaller parts separately.")
|
114 |
+
break # Stop adding files if limit reached
|
115 |
+
|
116 |
+
if not included_files:
|
117 |
+
st.error("π¨ No code files could be included within the estimated token limit.")
|
118 |
+
return None, []
|
119 |
+
|
120 |
+
prompt_content += concatenated_code
|
121 |
+
|
122 |
+
# Define the requested JSON structure based on selections
|
123 |
+
json_structure_description = "{\n"
|
124 |
+
if "generate_docs" in requested_analyses:
|
125 |
+
json_structure_description += ' "documentation_suggestions": [{"file": "path/to/file", "line": number, "suggestion": "Suggested docstring/comment"}],\n'
|
126 |
+
if "find_bugs" in requested_analyses:
|
127 |
+
json_structure_description += ' "potential_bugs": [{"file": "path/to/file", "line": number, "description": "Description of potential bug/anti-pattern", "severity": "High/Medium/Low"}],\n'
|
128 |
+
if "check_style" in requested_analyses:
|
129 |
+
json_structure_description += ' "style_issues": [{"file": "path/to/file", "line": number, "description": "Description of style deviation"}],\n'
|
130 |
+
if "summarize_modules" in requested_analyses:
|
131 |
+
json_structure_description += ' "module_summaries": [{"file": "path/to/file", "summary": "One-paragraph summary of the file purpose/functionality"}],\n'
|
132 |
+
if "suggest_refactoring" in requested_analyses:
|
133 |
+
json_structure_description += ' "refactoring_suggestions": [{"file": "path/to/file", "line": number, "area": "e.g., function name, class name", "suggestion": "Description of refactoring suggestion"}],\n'
|
134 |
+
|
135 |
+
# Remove trailing comma and add closing brace
|
136 |
+
if json_structure_description.endswith(',\n'):
|
137 |
+
json_structure_description = json_structure_description[:-2] + "\n}"
|
138 |
+
else:
|
139 |
+
json_structure_description += "}" # Handle case where no sections selected (though UI should prevent)
|
140 |
+
|
141 |
+
|
142 |
+
prompt_footer = f"""
|
143 |
+
**Analysis Task:**
|
144 |
+
Perform the analyses corresponding to the keys present in the JSON structure below, based *only* on the provided code files ({', '.join(included_files)}).
|
145 |
+
|
146 |
+
**Output Format:**
|
147 |
+
Respond ONLY with a single, valid JSON object adhering strictly to the following structure. If no issues/suggestions are found for a category, provide an empty list `[]`. Do not include explanations outside the JSON structure.
|
148 |
+
|
149 |
+
{json_structure_description}
|
150 |
+
|
151 |
+
**JSON Output Only:**
|
152 |
+
"""
|
153 |
+
full_prompt = prompt_content + prompt_footer
|
154 |
+
# print(f"--- PROMPT (First 500 chars): ---\n{full_prompt[:500]}\n--------------------------") # Debug: Print start of prompt
|
155 |
+
return full_prompt, included_files
|
156 |
+
|
157 |
+
|
158 |
+
def call_gemini_api(prompt):
|
159 |
+
"""Calls the Gemini API and attempts to parse the JSON response."""
|
160 |
+
if not prompt:
|
161 |
+
return None, "Prompt generation failed."
|
162 |
+
|
163 |
+
try:
|
164 |
+
st.write(f"π‘ Sending request to {GEMINI_MODEL_NAME}...") # Progress update
|
165 |
+
response = model.generate_content(
|
166 |
+
prompt,
|
167 |
+
generation_config=genai.types.GenerationConfig(
|
168 |
+
# candidate_count=1, # Default is 1
|
169 |
+
# stop_sequences=['...'], # Optional stop sequences
|
170 |
+
# max_output_tokens=..., # Can be useful, but JSON structure might vary
|
171 |
+
temperature=0.2 # Lower temperature for more deterministic code analysis
|
172 |
+
),
|
173 |
+
safety_settings=[ # Adjust as needed, might need to be less strict for code
|
174 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
175 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
176 |
+
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
177 |
+
# Be cautious with dangerous content, code analysis might trigger it
|
178 |
+
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
179 |
+
]
|
180 |
)
|
181 |
+
st.write("β
Response received from AI.")
|
182 |
+
|
183 |
+
# Debug: Print raw response
|
184 |
+
# print(f"--- RAW API RESPONSE ---\n{response.text}\n------------------------")
|
185 |
+
|
186 |
+
# Attempt to parse the JSON response - more robust extraction
|
187 |
+
try:
|
188 |
+
# Find the start and end of the JSON block
|
189 |
+
json_start = response.text.find('{')
|
190 |
+
json_end = response.text.rfind('}') + 1
|
191 |
+
if json_start != -1 and json_end != -1:
|
192 |
+
json_response_text = response.text[json_start:json_end]
|
193 |
+
insights = json.loads(json_response_text)
|
194 |
+
return insights, None
|
195 |
+
else:
|
196 |
+
# Fallback if no {} found - maybe simple text response?
|
197 |
+
st.warning("β οΈ Could not find JSON structure in response. Displaying raw text.")
|
198 |
+
return {"raw_response": response.text}, "AI response was not valid JSON, showing raw text."
|
199 |
+
|
200 |
+
except json.JSONDecodeError as json_err:
|
201 |
+
st.error(f"π¨ Error parsing JSON response from AI: {json_err}")
|
202 |
+
st.error("Raw AI Response:")
|
203 |
+
st.code(response.text, language='text')
|
204 |
+
return None, f"AI response was not valid JSON: {json_err}"
|
205 |
+
except Exception as e:
|
206 |
+
st.error(f"π¨ Unexpected issue processing AI response: {e}")
|
207 |
+
try: st.code(f"Response object: {response}", language='text')
|
208 |
+
except: pass
|
209 |
+
return None, f"Unexpected response structure: {e}"
|
210 |
+
|
211 |
+
except Exception as e:
|
212 |
+
st.error(f"π¨ An error occurred during API call: {e}")
|
213 |
+
# Add specific error checks if possible (e.g., quota, safety blocks)
|
214 |
+
error_msg = f"API call failed: {e}"
|
215 |
+
if "block_reason: SAFETY" in str(e):
|
216 |
+
error_msg = "Content blocked due to safety settings. Code or AI response may have triggered filters."
|
217 |
+
elif "429" in str(e): # Crude check for quota error
|
218 |
+
error_msg = "API Quota Exceeded or Rate Limit hit. Check your Google AI Studio dashboard."
|
219 |
+
return None, error_msg
|
220 |
+
|
221 |
+
|
222 |
+
def display_results(results_json, requested_analyses):
|
223 |
+
"""Renders the analysis results in Streamlit."""
|
224 |
+
st.header("π Analysis Report")
|
225 |
+
|
226 |
+
if not isinstance(results_json, dict):
|
227 |
+
st.error("Invalid results format received.")
|
228 |
+
st.json(results_json) # Show what was received
|
229 |
+
return
|
230 |
+
|
231 |
+
# Handle raw response fallback
|
232 |
+
if "raw_response" in results_json:
|
233 |
+
st.subheader("Raw AI Response (JSON Parsing Failed)")
|
234 |
+
st.code(results_json["raw_response"], language='text')
|
235 |
+
return
|
236 |
+
|
237 |
+
# Display each requested section
|
238 |
+
if "generate_docs" in requested_analyses:
|
239 |
+
st.subheader(AVAILABLE_ANALYSES["generate_docs"])
|
240 |
+
suggestions = results_json.get("documentation_suggestions", [])
|
241 |
+
if suggestions:
|
242 |
+
for item in suggestions:
|
243 |
+
st.markdown(f"- **File:** `{item.get('file', 'N/A')}` (Line: {item.get('line', 'N/A')})")
|
244 |
+
st.code(item.get('suggestion', ''), language='text') # Show suggestion as code/text
|
245 |
+
else:
|
246 |
+
st.markdown("_No documentation suggestions provided._")
|
247 |
+
st.divider()
|
248 |
+
|
249 |
+
if "find_bugs" in requested_analyses:
|
250 |
+
st.subheader(AVAILABLE_ANALYSES["find_bugs"])
|
251 |
+
bugs = results_json.get("potential_bugs", [])
|
252 |
+
if bugs:
|
253 |
+
for item in bugs:
|
254 |
+
st.markdown(f"- **File:** `{item.get('file', 'N/A')}` (Line: {item.get('line', 'N/A')}) - **Severity:** {item.get('severity', 'Unknown')}")
|
255 |
+
st.markdown(f" Description: {item.get('description', 'N/A')}")
|
256 |
+
else:
|
257 |
+
st.markdown("_No potential bugs identified._")
|
258 |
+
st.divider()
|
259 |
+
|
260 |
+
if "check_style" in requested_analyses:
|
261 |
+
st.subheader(AVAILABLE_ANALYSES["check_style"])
|
262 |
+
issues = results_json.get("style_issues", [])
|
263 |
+
if issues:
|
264 |
+
for item in issues:
|
265 |
+
st.markdown(f"- **File:** `{item.get('file', 'N/A')}` (Line: {item.get('line', 'N/A')})")
|
266 |
+
st.markdown(f" Issue: {item.get('description', 'N/A')}")
|
267 |
+
else:
|
268 |
+
st.markdown("_No style issues identified._")
|
269 |
+
st.divider()
|
270 |
+
|
271 |
+
if "summarize_modules" in requested_analyses:
|
272 |
+
st.subheader(AVAILABLE_ANALYSES["summarize_modules"])
|
273 |
+
summaries = results_json.get("module_summaries", [])
|
274 |
+
if summaries:
|
275 |
+
for item in summaries:
|
276 |
+
st.markdown(f"**File:** `{item.get('file', 'N/A')}`")
|
277 |
+
st.markdown(f"> {item.get('summary', 'N/A')}") # Blockquote for summary
|
278 |
+
else:
|
279 |
+
st.markdown("_No module summaries provided._")
|
280 |
+
st.divider()
|
281 |
+
|
282 |
+
if "suggest_refactoring" in requested_analyses:
|
283 |
+
st.subheader(AVAILABLE_ANALYSES["suggest_refactoring"])
|
284 |
+
suggestions = results_json.get("refactoring_suggestions", [])
|
285 |
+
if suggestions:
|
286 |
+
for item in suggestions:
|
287 |
+
st.markdown(f"- **File:** `{item.get('file', 'N/A')}` (Line: {item.get('line', 'N/A')}) - **Area:** {item.get('area', 'N/A')}")
|
288 |
+
st.markdown(f" Suggestion: {item.get('suggestion', 'N/A')}")
|
289 |
+
else:
|
290 |
+
st.markdown("_No refactoring suggestions provided._")
|
291 |
+
st.divider()
|
292 |
+
|
293 |
+
# Option to download the raw JSON results
|
294 |
+
st.download_button(
|
295 |
+
label="Download Full Report (JSON)",
|
296 |
+
data=json.dumps(results_json, indent=4),
|
297 |
+
file_name="code_audit_report.json",
|
298 |
+
mime="application/json"
|
299 |
+
)
|
300 |
+
|
301 |
+
|
302 |
+
# --- Streamlit App Main Interface ---
|
303 |
+
st.set_page_config(page_title="Codebase Audit Assistant", layout="wide")
|
304 |
+
|
305 |
+
st.title("π€ Codebase Audit & Documentation Assistant")
|
306 |
+
st.markdown(f"Upload your codebase (`.zip`) for analysis using **{GEMINI_MODEL_NAME}**.")
|
307 |
+
st.warning("β οΈ **Privacy Notice:** Your code content will be sent to the Google Gemini API for analysis. Do not upload highly sensitive or proprietary code if you are not comfortable with this.")
|
308 |
+
|
309 |
+
# Sidebar for options
|
310 |
+
st.sidebar.header("π οΈ Analysis Options")
|
311 |
+
selected_analyses = []
|
312 |
+
for key, name in AVAILABLE_ANALYSES.items():
|
313 |
+
if st.sidebar.checkbox(name, value=True, key=f"cb_{key}"):
|
314 |
+
selected_analyses.append(key)
|
315 |
+
|
316 |
+
st.sidebar.header("π How To Use")
|
317 |
+
st.sidebar.info(
|
318 |
+
"1. Ensure `GEMINI_API_KEY` is in `.streamlit/secrets.toml`.\n"
|
319 |
+
"2. Select desired analyses in the sidebar.\n"
|
320 |
+
"3. Create a **ZIP archive** of your codebase.\n"
|
321 |
+
"4. Upload the `.zip` file below.\n"
|
322 |
+
"5. Click 'Analyze Codebase'.\n"
|
323 |
+
"6. Review the report generated."
|
324 |
)
|
325 |
+
st.sidebar.info(f"**Note:** Only files with common code extensions ({', '.join(CODE_EXTENSIONS)}) within the ZIP will be processed. Analysis might be limited by token estimates (~{MAX_PROMPT_TOKENS_ESTIMATE} tokens).")
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
+
# Main content area
|
329 |
+
uploaded_file = st.file_uploader("π Upload Codebase ZIP File", type=['zip'])
|
330 |
|
331 |
+
if uploaded_file:
|
332 |
+
st.success(f"β
File '{uploaded_file.name}' uploaded successfully.")
|
333 |
+
|
334 |
+
# Process the zip file immediately to give feedback
|
335 |
+
with st.spinner("Inspecting ZIP file..."):
|
336 |
+
code_files, total_chars, file_count, ignored_files = process_zip_file(uploaded_file)
|
337 |
+
|
338 |
+
if code_files is not None:
|
339 |
+
st.info(f"Found **{file_count}** relevant code files ({total_chars:,} characters). Estimated tokens: ~{estimate_token_count(total_chars):,}")
|
340 |
+
if ignored_files:
|
341 |
+
with st.expander(f"View {len(ignored_files)} Skipped/Ignored Files"):
|
342 |
+
st.json(ignored_files)
|
343 |
+
|
344 |
+
# Analysis Button
|
345 |
+
analyze_button = st.button("Analyze Codebase", type="primary", disabled=(not selected_analyses or file_count == 0))
|
346 |
+
|
347 |
+
if not selected_analyses and analyze_button:
|
348 |
+
st.warning("Please select at least one analysis type from the sidebar.")
|
349 |
+
elif file_count == 0 and analyze_button:
|
350 |
+
st.warning("No relevant code files found in the ZIP archive to analyze.")
|
351 |
+
|
352 |
+
|
353 |
+
if analyze_button and selected_analyses and file_count > 0:
|
354 |
+
st.divider()
|
355 |
+
with st.spinner(f"π Preparing prompt and contacting {GEMINI_MODEL_NAME}... This may take several minutes for large codebases."):
|
356 |
+
# 1. Construct the prompt
|
357 |
+
analysis_prompt, included_files_in_prompt = construct_analysis_prompt(code_files, selected_analyses)
|
358 |
+
|
359 |
+
if analysis_prompt and included_files_in_prompt:
|
360 |
+
st.write(f"Analyzing {len(included_files_in_prompt)} files...")
|
361 |
+
# 2. Call the API
|
362 |
+
results_json, error_message = call_gemini_api(analysis_prompt)
|
363 |
+
|
364 |
+
# 3. Display Results
|
365 |
+
if error_message:
|
366 |
+
st.error(f"Analysis Failed: {error_message}")
|
367 |
+
elif results_json:
|
368 |
+
display_results(results_json, selected_analyses)
|
369 |
+
else:
|
370 |
+
st.error("Analysis did not return results or an unknown error occurred.")
|
371 |
+
elif not included_files_in_prompt:
|
372 |
+
st.error("Could not proceed: No files were included in the prompt (likely due to token limits or processing errors).")
|
373 |
|
|
|
|
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
else:
|
376 |
+
# Error message already shown by process_zip_file
|
377 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
+
else:
|
380 |
+
st.info("Upload a ZIP file containing your source code to begin.")
|
381 |
|
382 |
+
st.divider()
|
383 |
+
st.markdown("_Assistant powered by Google Gemini._")
|
|
|
|
|
|
|
|
|
|