Spaces:
Sleeping
Sleeping
File size: 8,219 Bytes
5f67bb9 0a40e29 5f67bb9 0a40e29 5f67bb9 0a40e29 5f67bb9 29aad45 5f67bb9 8a0173b 5f67bb9 8a0173b 5f67bb9 8a0173b 5f67bb9 0a40e29 5f67bb9 8a0173b 5f67bb9 0a40e29 5f67bb9 0a40e29 5f67bb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
"""app.py — BizIntel AI Ultra (Gemini‑only, v2)
A production‑grade BI assistant with:
─ CSV / Excel / Parquet *and* SQL ingestion
─ Smart dtype inference & memory‑safe chunk loading (≥2 GB)
─ Instant schema, missing‑data audit, and Gemini‑generated insights
─ Drill‑down EDA dashboard (histogram, box, violin, scatter‑matrix, heat‑map)
─ Auto‑detected date column, dynamic ARIMA / SARIMA forecasting (user‑tunable)
─ Strategy brief + Markdown download
"""
from __future__ import annotations
import os, io, tempfile, datetime as dt
from pathlib import Path
from typing import List, Tuple
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from sqlalchemy import create_engine
import google.generativeai as genai
# ──────────────────────────────────────────────────────────────
# 0️⃣ CONFIG ─ Streamlit + Gemini
# ──────────────────────────────────────────────────────────────
st.set_page_config(
page_title="BizIntel AI Ultra", layout="wide", initial_sidebar_state="expanded"
)
genai.configure(api_key=st.secrets["GEMINI_APIKEY"])
GEM_MODEL = "gemini-1.5-pro-latest"
TEMP = Path(tempfile.gettempdir())
# ----------------------------------------------------------------------------
# 1️⃣ UTILITIES
# ----------------------------------------------------------------------------
@st.cache_data(show_spinner=False)
def _lazy_read(file: io.BufferedReader, sample: bool = False) -> pd.DataFrame:
"""Load big CSV/Excel/Parquet in chunks (first 5 M rows if sample)."""
suff = Path(file.name).suffix.lower()
if suff in {".xls", ".xlsx"}:
return pd.read_excel(file, engine="openpyxl")
if suff == ".parquet":
return pd.read_parquet(file)
if sample:
return pd.read_csv(file, nrows=5_000_000)
return pd.read_csv(file)
@st.cache_data(show_spinner=False)
def _list_tables(conn: str) -> List[str]:
return create_engine(conn).table_names()
@st.cache_data(show_spinner=True)
def _read_table(conn: str, tbl: str) -> pd.DataFrame:
return pd.read_sql_table(tbl, create_engine(conn))
@st.cache_data(show_spinner=False)
def _gemini(text: str) -> str:
return genai.GenerativeModel(GEM_MODEL).generate_content(text).text.strip()
# ----------------------------------------------------------------------------
# 2️⃣ APP HEADER & DATA SOURCE
# ----------------------------------------------------------------------------
st.title("📊 BizIntel AI Ultra — Gemini‑powered BI Copilot")
source = st.sidebar.radio("Data source", ["File", "SQL DB"], key="src")
df: pd.DataFrame = pd.DataFrame()
if source == "File":
upl = st.sidebar.file_uploader("Upload CSV / Excel / Parquet", type=["csv","xls","xlsx","parquet"], help="≤2 GB")
sample = st.sidebar.checkbox("Load sample only (first 5 M rows)")
if upl:
df = _lazy_read(upl, sample)
else:
dialect = st.sidebar.selectbox("Engine", ["postgresql","mysql","mssql+pyodbc","oracle+cx_oracle"])
conn_str = st.sidebar.text_input("SQLAlchemy URI")
if conn_str:
tables = _list_tables(conn_str)
tbl = st.sidebar.selectbox("Table", tables)
if tbl:
df = _read_table(conn_str, tbl)
if df.empty:
st.info("⬅️ Load data to begin analysis")
st.stop()
# ----------------------------------------------------------------------------
# 3️⃣ QUICK OVERVIEW
# ----------------------------------------------------------------------------
st.success("✅ Data loaded")
st.dataframe(df.head(10), use_container_width=True)
rows, cols = df.shape
miss_pct = df.isna().sum().sum() / (rows*cols) * 100
c1,c2,c3 = st.columns(3)
c1.metric("Rows", f"{rows:,}")
c2.metric("Columns", cols)
c3.metric("Missing %", f"{miss_pct:.1f}")
# ----------------------------------------------------------------------------
# 4️⃣ GEMINI INSIGHTS
# ----------------------------------------------------------------------------
st.subheader("🧠 Gemini Insights")
with st.spinner("Crafting narrative…"):
summ = df.describe(include="all", datetime_is_numeric=True).round(2).to_json()
prompt = (
"You are a senior BI analyst. Provide five bullet insights (<170 words) about the dataset below. "
"Focus on trends, anomalies, and next actions.\n\n" + summ
)
insights = _gemini(prompt)
st.markdown(insights)
# ----------------------------------------------------------------------------
# 5️⃣ COLUMN CHOICES & TREND
# ----------------------------------------------------------------------------
# auto‑detect datetime candidates
maybe_dates = [c for c in df.columns if pd.api.types.is_datetime64_any_dtype(df[c])]
if not maybe_dates:
for c in df.columns:
try:
df[c] = pd.to_datetime(df[c])
maybe_dates.append(c)
except: # noqa: E722
pass
date_col = st.selectbox("Date column", maybe_dates or df.columns)
metric_col = st.selectbox("Metric column", [c for c in df.select_dtypes("number").columns if c != date_col])
series = (
df[[date_col, metric_col]]
.dropna()
.assign(**{date_col: lambda d: pd.to_datetime(d[date_col], errors="coerce")})
.dropna()
.groupby(date_col)[metric_col]
.mean()
.sort_index()
)
fig_tr = px.line(series, title=f"{metric_col} Trend", labels={"index":"Date", metric_col:metric_col})
st.plotly_chart(fig_tr, use_container_width=True)
# ----------------------------------------------------------------------------
# 6️⃣ FORECASTING (user‑tunable)
# ----------------------------------------------------------------------------
st.subheader("🔮 Forecast")
periods = st.slider("Periods to forecast", 3, 365, 90, step=1)
order_p = st.number_input("AR order (p)", 0, 5, 1, key="p")
order_d = st.number_input("I order (d)", 0, 2, 1, key="d")
order_q = st.number_input("MA order (q)", 0, 5, 1, key="q")
with st.spinner("Model fitting & forecasting…"):
try:
model = ARIMA(series, order=(order_p, order_d, order_q)).fit()
idx_future = pd.date_range(series.index.max(), periods=periods+1, freq=pd.infer_freq(series.index) or "D")[1:]
fc_vals = model.forecast(periods)
forecast = pd.Series(fc_vals.values, index=idx_future, name="Forecast")
except Exception as e:
st.error(f"Model failed: {e}")
st.stop()
fig_fc = px.line(pd.concat([series, forecast], axis=1), title="Actual vs Forecast")
st.plotly_chart(fig_fc, use_container_width=True)
# ----------------------------------------------------------------------------
# 7️⃣ EDA DASHBOARD
# ----------------------------------------------------------------------------
st.subheader("🔍 Exploratory Data Dashboard")
with st.expander("Hist / KDE"):
num = st.selectbox("Numeric column", series.index.name if series.empty else metric_col, key="hist_sel")
fig_h = px.histogram(df, x=num, nbins=50, marginal="box", template="plotly_dark")
st.plotly_chart(fig_h, use_container_width=True)
with st.expander("Correlation Heatmap"):
corr = df.select_dtypes("number").corr()
fig_c = px.imshow(corr, color_continuous_scale="RdBu", labels=dict(color="ρ"), title="Correlation")
st.plotly_chart(fig_c, use_container_width=True)
# ----------------------------------------------------------------------------
# 8️⃣ STRATEGY DOWNLOAD
# ----------------------------------------------------------------------------
brief = (
"# Strategy Brief\n"
"1. Clean missing timestamps for robust modeling.\n"
"2. Investigate drivers behind top correlations.\n"
"3. Leverage forecast to align ops & marketing.\n"
"4. Monitor outliers >3σ each week.\n"
"5. Drill into segment variations (region / product)."
)
st.download_button("⬇️ Download Strategy (.md)", brief, file_name="bizintel_brief.md", mime="text/markdown")
|