Spaces:
Sleeping
Sleeping
File size: 14,493 Bytes
a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 e4b2570 4778379 a7d25a1 a875537 4778379 a7d25a1 4778379 29aad45 4778379 a7d25a1 4778379 a875537 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 5f67bb9 a7d25a1 4778379 a7d25a1 4778379 e4b2570 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 4778379 a7d25a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# app.py โ BizIntel AI Ultra v2.1
# =============================================================
# โข Upload CSV / Excel โข SQLโDB fetch โข Trend + ARIMA forecast
# โข Model explainability (summary, coef interp, ACF, back-test)
# โข Gemini 1.5 Pro strategy generation
# โข Optional EDA visuals โข Safe Plotly PNG write to /tmp
# =============================================================
import os
import tempfile
import warnings
from typing import List, Tuple
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import streamlit as st
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tools.sm_exceptions import ConvergenceWarning
import google.generativeai as genai
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Local helper modules
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
from tools.csv_parser import parse_csv_tool
from tools.plot_generator import plot_metric_tool
from tools.forecaster import forecast_metric_tool # only for png path if needed
from tools.visuals import (
histogram_tool, scatter_matrix_tool, corr_heatmap_tool
)
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Plotly safe write โ ensure PNGs go to writable /tmp
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
TMP = tempfile.gettempdir()
orig_write = go.Figure.write_image
go.Figure.write_image = lambda self, p, *a, **k: orig_write(
self, os.path.join(TMP, os.path.basename(p)), *a, **k
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Gemini 1.5 Pro setup
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
gemini = genai.GenerativeModel(
"gemini-1.5-pro-latest",
generation_config=dict(temperature=0.7, top_p=0.9, response_mime_type="text/plain"),
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Streamlit layout
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide")
st.title("๐ BizIntel AI Ultra โ Advanced Analytics + Gemini 1.5 Pro")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 1) Data source selection
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
choice = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])
csv_path: str | None = None
if choice.startswith("Upload"):
up = st.file_uploader("CSV or Excel (โค 500 MB)", type=["csv", "xlsx", "xls"])
if up:
tmp = os.path.join(TMP, up.name)
with open(tmp, "wb") as f:
f.write(up.read())
if up.name.lower().endswith(".csv"):
csv_path = tmp
else:
try:
pd.read_excel(tmp).to_csv(tmp + ".csv", index=False)
csv_path = tmp + ".csv"
except Exception as e:
st.error(f"Excel parse failed: {e}")
else:
eng = st.selectbox("DB engine", SUPPORTED_ENGINES, key="db_eng")
conn = st.text_input("SQLAlchemy connection string")
if conn:
try:
tbl = st.selectbox("Table", list_tables(conn))
if st.button("Fetch table"):
csv_path = fetch_data_from_db(conn, tbl)
st.success(f"Fetched **{tbl}**")
except Exception as e:
st.error(f"DB error: {e}")
if not csv_path:
st.stop()
with open(csv_path, "rb") as f:
st.download_button("โฌ๏ธ Download working CSV", f, file_name=os.path.basename(csv_path))
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 2) Column pickers
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
df_head = pd.read_csv(csv_path, nrows=5)
st.dataframe(df_head)
date_col = st.selectbox("Date/time column", df_head.columns)
numeric_df = df_head.select_dtypes("number")
metric_col = st.selectbox(
"Numeric metric column",
[c for c in numeric_df.columns if c != date_col] or numeric_df.columns
)
if metric_col is None:
st.warning("Need at least one numeric column.")
st.stop()
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 3) Quick data summary & trend chart
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
summary_md = parse_csv_tool(csv_path)
trend_res = plot_metric_tool(csv_path, date_col, metric_col)
if isinstance(trend_res, tuple):
trend_fig, _ = trend_res
elif isinstance(trend_res, go.Figure):
trend_fig = trend_res
else: # error message str
st.warning(trend_res)
trend_fig = None
if trend_fig is not None:
st.subheader("๐ Trend")
st.plotly_chart(trend_fig, use_container_width=True)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 4) Build clean series & ARIMA helpers
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
@st.cache_data(show_spinner="Preparing seriesโฆ")
def build_series(path, dcol, vcol):
df = pd.read_csv(path, usecols=[dcol, vcol])
df[dcol] = pd.to_datetime(df[dcol], errors="coerce")
df[vcol] = pd.to_numeric(df[vcol], errors="coerce")
df = df.dropna(subset=[dcol, vcol]).sort_values(dcol)
if df.empty:
raise ValueError("Not enough valid data.")
s = df.set_index(dcol)[vcol].groupby(level=0).mean().sort_index()
freq = pd.infer_freq(s.index) or "D"
s = s.asfreq(freq).interpolate()
return s, freq
@st.cache_data(show_spinner="Fitting ARIMAโฆ")
def fit_arima(series):
warnings.simplefilter("ignore", ConvergenceWarning)
return ARIMA(series, order=(1, 1, 1)).fit()
try:
series, freq = build_series(csv_path, date_col, metric_col)
horizon = 90 if freq == "D" else 3
model_res = fit_arima(series)
fc_obj = model_res.get_forecast(horizon)
forecast = fc_obj.predicted_mean
ci = fc_obj.conf_int()
except Exception as e:
st.subheader(f"๐ฎ {metric_col} Forecast")
st.warning(f"Forecast failed: {e}")
forecast = ci = model_res = None
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 5) Forecast plot & explainability
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
if forecast is not None:
fig = go.Figure()
fig.add_scatter(x=series.index, y=series, mode="lines", name=metric_col)
fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast")
fig.add_scatter(
x=ci.index, y=ci.iloc[:, 1], mode="lines", line=dict(width=0), showlegend=False
)
fig.add_scatter(
x=ci.index,
y=ci.iloc[:, 0],
mode="lines",
line=dict(width=0),
fill="tonexty",
fillcolor="rgba(255,0,0,0.25)",
showlegend=False,
)
fig.update_layout(
title=f"{metric_col} Forecast ({horizon} steps)",
xaxis_title=date_col,
yaxis_title=metric_col,
template="plotly_dark",
)
st.subheader(f"๐ฎ {metric_col} Forecast")
st.plotly_chart(fig, use_container_width=True)
# -- model summary -----------------------------------------------------
st.subheader("๐ ARIMA Model Summary")
st.code(model_res.summary().as_text())
# -- coefficient interpretation ---------------------------------------
ar, ma = model_res.arparams, model_res.maparams
interp = []
if ar.size:
interp.append(
f"โข AR(1) ={ar[0]:.2f} โ "
f"{'strong' if abs(ar[0]) > 0.5 else 'moderate'} persistence."
)
if ma.size:
interp.append(
f"โข MA(1) ={ma[0]:.2f} โ "
f"{'large' if abs(ma[0]) > 0.5 else 'modest'} shock adjustment."
)
st.subheader("๐ Coefficient Interpretation")
st.markdown("\n".join(interp) or "N/A")
# -- residual ACF ------------------------------------------------------
st.subheader("๐ Residual ACF")
acf_png = os.path.join(TMP, "acf.png")
plot_acf(model_res.resid.dropna(), lags=30, alpha=0.05)
import matplotlib.pyplot as plt
plt.tight_layout()
plt.savefig(acf_png, dpi=120)
plt.close()
st.image(acf_png, use_container_width=True)
# -- back-test ---------------------------------------------------------
k = max(int(len(series) * 0.2), 10)
train, test = series[:-k], series[-k:]
bt_res = ARIMA(train, order=(1, 1, 1)).fit()
bt_pred = bt_res.forecast(k)
mape = (abs(bt_pred - test) / test).mean() * 100
rmse = np.sqrt(((bt_pred - test) ** 2).mean())
st.subheader("๐งช Back-test (last 20 %)")
col1, col2 = st.columns(2)
col1.metric("MAPE", f"{mape:.2f}%")
col2.metric("RMSE", f"{rmse:,.0f}")
# -- seasonal decomposition (optional) --------------------------------
with st.expander("Seasonal Decomposition"):
try:
period = {"D": 7, "H": 24, "M": 12}.get(freq)
if period:
dec = seasonal_decompose(series, period=period, model="additive")
for comp in ["trend", "seasonal", "resid"]:
st.line_chart(getattr(dec, comp).dropna(), height=150)
else:
st.info("Frequency not suited for decomposition.")
except Exception as e:
st.info(f"Decomposition failed: {e}")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 6) Gemini strategy report
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
prompt = (
"You are **BizIntel Strategist AI**.\n\n"
f"### Dataset Summary\n```\n{summary_md}\n```\n\n"
f"### {metric_col} Forecast\n```\n"
f"{forecast.to_string() if forecast is not None else 'N/A'}\n```"
"\nGenerate a Markdown report with:\n"
"โข 5 insights\nโข 3 actionable strategies\nโข Risks / anomalies\nโข Additional visuals."
)
with st.spinner("Gemini 1.5 Pro is thinkingโฆ"):
md = gemini.generate_content(prompt).text
st.subheader("๐ Strategy Recommendations (Gemini 1.5 Pro)")
st.markdown(md)
st.download_button("โฌ๏ธ Download Strategy (.md)", md, file_name="strategy.md")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 7) High-level dataset KPIs + optional EDA
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
fulldf = pd.read_csv(csv_path, low_memory=False)
rows, cols = fulldf.shape
miss_pct = fulldf.isna().mean().mean() * 100
st.markdown("---")
st.subheader("๐ Dataset KPIs")
k1, k2, k3 = st.columns(3)
k1.metric("Rows", f"{rows:,}")
k2.metric("Columns", cols)
k3.metric("Missing %", f"{miss_pct:.1f}%")
with st.expander("Descriptive Statistics (numeric)"):
st.dataframe(
fulldf.describe().T.round(2).style.format(precision=2).background_gradient("Blues"),
use_container_width=True,
)
st.markdown("---")
st.subheader("๐ Optional EDA Visuals")
if st.checkbox("Histogram"):
col = st.selectbox("Variable", fulldf.select_dtypes("number").columns)
hr = histogram_tool(csv_path, col)
if isinstance(hr, tuple):
st.plotly_chart(hr[0], use_container_width=True)
else:
st.warning(hr)
if st.checkbox("Scatter Matrix"):
opts = fulldf.select_dtypes("number").columns.tolist()
sel = st.multiselect("Columns", opts, default=opts[:3])
if sel:
sm = scatter_matrix_tool(csv_path, sel)
if isinstance(sm, tuple):
st.plotly_chart(sm[0], use_container_width=True)
else:
st.warning(sm)
if st.checkbox("Correlation Heat-map"):
hm = corr_heatmap_tool(csv_path)
if isinstance(hm, tuple):
st.plotly_chart(hm[0], use_container_width=True)
else:
st.warning(hm)
|