File size: 13,454 Bytes
4778379
 
 
 
 
 
 
 
 
 
e4b2570
4778379
 
 
a875537
4778379
 
 
 
 
29aad45
4778379
 
 
 
 
 
 
a875537
4778379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f67bb9
4778379
 
 
 
 
 
 
e4b2570
4778379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# app.py โ€” BizIntelย AIย Ultraย v2
# =============================================================
# CSVย /ย Excelย /ย DB ingestion โ€ข Trend + ARIMA forecast (90ย d or 3ย steps)
# Confidence bands โ€ข Model explainability โ€ข Geminiย 1.5 Pro strategy
# Safe Plotly writes -> /tmp โ€ข KPI cards โ€ข Optional EDA visuals
# =============================================================

import os, tempfile, warnings
from typing import List

import numpy as np
import pandas as pd
import streamlit as st
import plotly.graph_objects as go
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tools.sm_exceptions import ConvergenceWarning
import google.generativeai as genai
import matplotlib.pyplot as plt

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 0)  Plotly safe write โ†’ /tmp
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
TMP = tempfile.gettempdir()
orig_write = go.Figure.write_image
go.Figure.write_image = lambda self, p, *a, **k: orig_write(
    self, os.path.join(TMP, os.path.basename(p)), *a, **k
)

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 1)  Local helpers & DB connector
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
from tools.csv_parser      import parse_csv_tool
from tools.plot_generator  import plot_metric_tool
from tools.visuals         import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
from db_connector          import fetch_data_from_db, list_tables, SUPPORTED_ENGINES

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 2)  Gemini 1.5ย Pro
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
gemini = genai.GenerativeModel(
    "gemini-1.5-pro-latest",
    generation_config=dict(temperature=0.7, top_p=0.9, response_mime_type="text/plain"),
)

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 3)  Streamlit setup
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
st.set_page_config(page_title="BizIntelย AIย Ultra", layout="wide")
st.title("๐Ÿ“Šย BizIntelย AIย Ultraย โ€“ Advanced Analyticsย +ย Geminiย 1.5ย Pro")

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 4)  Data source
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
choice = st.radio("Select data source", ["Upload CSVย /ย Excel", "Connect to SQL Database"])
csv_path: str | None = None

if choice.startswith("Upload"):
    up = st.file_uploader("CSVย orย Excelย (โ‰คโ€ฏ500โ€ฏMB)", type=["csv","xlsx","xls"])
    if up:
        tmp = os.path.join(TMP, up.name)
        with open(tmp, "wb") as f: f.write(up.read())
        if up.name.lower().endswith(".csv"):
            csv_path = tmp
        else:
            try:
                pd.read_excel(tmp, sheet_name=0).to_csv(tmp+".csv", index=False)
                csv_path = tmp+".csv"
            except Exception as e:
                st.error(f"Excel parse failed: {e}")
else:
    eng  = st.selectbox("DB engine", SUPPORTED_ENGINES)
    conn = st.text_input("SQLAlchemyย connection string")
    if conn:
        try:
            tbl = st.selectbox("Table", list_tables(conn))
            if st.button("Fetch table"):
                csv_path = fetch_data_from_db(conn, tbl)
                st.success(f"Fetched **{tbl}**")
        except Exception as e:
            st.error(f"DB error: {e}")

if not csv_path:
    st.stop()

with open(csv_path, "rb") as f:
    st.download_button("โฌ‡๏ธย Download working CSV", f, file_name=os.path.basename(csv_path))

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 5)  Column selectors
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
df_head = pd.read_csv(csv_path, nrows=5)
st.dataframe(df_head)

date_col = st.selectbox("Date/time column", df_head.columns)
numeric_cols = df_head.select_dtypes("number").columns.tolist()
metric_options = [c for c in numeric_cols if c != date_col]
if not metric_options:
    st.error("No numeric columns available apart from the date column.")
    st.stop()
metric_col = st.selectbox("Numeric metric column", metric_options)

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 6)  Summary & trend chart
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
summary = parse_csv_tool(csv_path)
trend_fig = plot_metric_tool(csv_path, date_col, metric_col)
if isinstance(trend_fig, go.Figure):
    st.subheader("๐Ÿ“ˆย Trend")
    st.plotly_chart(trend_fig, use_container_width=True)
else:
    st.warning(trend_fig)

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 7)  Robust ARIMA + explainability
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
def build_series(path, dcol, vcol):
    df = pd.read_csv(path, usecols=[dcol, vcol])
    df[dcol] = pd.to_datetime(df[dcol], errors="coerce")
    df[vcol] = pd.to_numeric(df[vcol], errors="coerce")
    df = df.dropna(subset=[dcol, vcol]).sort_values(dcol)
    if df.empty or df[dcol].nunique() < 2:
        raise ValueError("Need โ‰ฅโ€ฏ2 valid timestamps.")
    s = df.set_index(dcol)[vcol].groupby(level=0).mean().sort_index()
    freq = pd.infer_freq(s.index) or "D"
    s = s.asfreq(freq).interpolate()
    return s, freq

@st.cache_data(show_spinner="Fitting ARIMAโ€ฆ")
def fit_arima(series):
    warnings.simplefilter("ignore", ConvergenceWarning)
    model = ARIMA(series, order=(1,1,1))
    return model.fit()

try:
    series, freq = build_series(csv_path, date_col, metric_col)
    horizon = 90 if freq == "D" else 3
    res = fit_arima(series)
    fc  = res.get_forecast(steps=horizon)
    forecast = fc.predicted_mean
    ci = fc.conf_int()
except Exception as e:
    st.subheader(f"๐Ÿ”ฎย {metric_col}ย Forecast")
    st.warning(f"Forecast failed: {e}")
    series = forecast = ci = None

if forecast is not None:
    # Plot with CI
    fig = go.Figure()
    fig.add_scatter(x=series.index,   y=series,  mode="lines", name=metric_col)
    fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast")
    fig.add_scatter(x=ci.index, y=ci.iloc[:,1], mode="lines",
                    line=dict(width=0), showlegend=False)
    fig.add_scatter(x=ci.index, y=ci.iloc[:,0], mode="lines",
                    line=dict(width=0), fill="tonexty",
                    fillcolor="rgba(255,0,0,0.25)", showlegend=False)
    fig.update_layout(title=f"{metric_col} Forecast ({horizon}ย steps)",
                      template="plotly_dark", xaxis_title=date_col,
                      yaxis_title=metric_col)
    st.subheader(f"๐Ÿ”ฎย {metric_col}ย Forecast")
    st.plotly_chart(fig, use_container_width=True)

    # ---------------- summary & interpretation ----------------
    st.subheader("๐Ÿ“„ย Model Summary")
    st.code(res.summary().as_text(), language="text")

    st.subheader("๐Ÿ—’ย Coefficient Interpretation")
    ar = res.arparams
    ma = res.maparams
    interp: List[str] = []
    if ar.size:
        interp.append(f"โ€ขย AR(1)ย ={ar[0]:.2f} โ†’ "
                      f"{'strong' if abs(ar[0])>0.5 else 'moderate'} "
                      "persistence in the series.")
    if ma.size:
        interp.append(f"โ€ขย MA(1)ย ={ma[0]:.2f} โ†’ "
                      f"{'large' if abs(ma[0])>0.5 else 'modest'} "
                      "shock adjustment.")
    st.markdown("\n".join(interp) or "N/A")

    # ---------------- Residual ACF ----------------
    st.subheader("๐Ÿ”ย Residual Autocorrelation (ACF)")
    plt.figure(figsize=(6,3))
    plot_acf(res.resid.dropna(), lags=30, alpha=0.05)
    acf_png = os.path.join(TMP, "acf.png")
    plt.tight_layout()
    plt.savefig(acf_png, dpi=120)
    plt.close()
    st.image(acf_png, use_container_width=True)

    # ---------------- Backโ€‘test ----------------
    k = max(int(len(series)*0.2), 10)
    train, test = series[:-k], series[-k:]
    bt_res   = ARIMA(train, order=(1,1,1)).fit()
    bt_pred  = bt_res.forecast(k)
    mape = (abs(bt_pred - test)/test).mean()*100
    rmse = np.sqrt(((bt_pred - test)**2).mean())

    st.subheader("๐Ÿงชย Backโ€‘test (last 20โ€ฏ%)")
    colA, colB = st.columns(2)
    colA.metric("MAPE", f"{mape:.2f}ย %")
    colB.metric("RMSE", f"{rmse:,.0f}")

    # ---------------- Optional seasonal decomposition -------
    with st.expander("Seasonal Decomposition"):
        try:
            period = {"D":7, "H":24, "M":12}.get(freq, None)
            if period:
                dec = seasonal_decompose(series, period=period, model="additive")
                for comp in ["trend","seasonal","resid"]:
                    st.line_chart(getattr(dec, comp), height=150)
            else:
                st.info("Frequency not suited for decomposition.")
        except Exception as e:
            st.info(f"Decomposition failed: {e}")

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 8)  Gemini strategy report
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
prompt = (
    "You are **BizIntel Strategist AI**.\n\n"
    f"### Dataset Summary\n```\n{summary}\n```\n\n"
    f"### {metric_col} Forecast\n```\n"
    f"{forecast.to_string() if forecast is not None else 'N/A'}\n```\n\n"
    "Craft a Markdown report:\n"
    "1. Five insights\n2. Three actionable strategies\n"
    "3. Risksย / anomalies\n4. Extra visuals to consider."
)
with st.spinner("Gemini generating strategyโ€ฆ"):
    md = gemini.generate_content(prompt).text
st.subheader("๐Ÿš€ย Strategyย Recommendationsย (Geminiย 1.5ย Pro)")
st.markdown(md)
st.download_button("โฌ‡๏ธย Downloadย Strategy (.md)", md, file_name="strategy.md")

# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# 9)  KPI cards + detailed stats + optional EDA  (unchanged)
# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
fulldf = pd.read_csv(csv_path, low_memory=False)
rows, cols = fulldf.shape
miss_pct = fulldf.isna().mean().mean()*100

st.markdown("---")
st.subheader("๐Ÿ“‘ย Datasetย Overview")
c1,c2,c3 = st.columns(3)
c1.metric("Rows", f"{rows:,}")
c2.metric("Columns", cols)
c3.metric("Missingย %", f"{miss_pct:.1f}%")

with st.expander("Descriptiveย Statistics"):
    st.dataframe(fulldf.describe().T.style.format(precision=2).background_gradient("Blues"),
                 use_container_width=True)

st.markdown("---")
st.subheader("๐Ÿ”ย Optionalย Exploratoryย Visuals")
num_cols = fulldf.select_dtypes("number").columns.tolist()

if st.checkbox("Histogram"):
    st.plotly_chart(histogram_tool(csv_path, st.selectbox("Var", num_cols, key="hist")),
                    use_container_width=True)

if st.checkbox("Scatterย Matrix"):
    sel = st.multiselect("Columns", num_cols, default=num_cols[:3])
    if sel:
        st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True)

if st.checkbox("Correlationย Heatโ€‘map"):
    st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)