Spaces:
Sleeping
Sleeping
File size: 13,454 Bytes
4778379 e4b2570 4778379 a875537 4778379 29aad45 4778379 a875537 4778379 5f67bb9 4778379 e4b2570 4778379 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# app.py โ BizIntelย AIย Ultraย v2
# =============================================================
# CSVย /ย Excelย /ย DB ingestion โข Trend + ARIMA forecast (90ย d or 3ย steps)
# Confidence bands โข Model explainability โข Geminiย 1.5 Pro strategy
# Safe Plotly writes -> /tmp โข KPI cards โข Optional EDA visuals
# =============================================================
import os, tempfile, warnings
from typing import List
import numpy as np
import pandas as pd
import streamlit as st
import plotly.graph_objects as go
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tools.sm_exceptions import ConvergenceWarning
import google.generativeai as genai
import matplotlib.pyplot as plt
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 0) Plotly safe write โ /tmp
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
TMP = tempfile.gettempdir()
orig_write = go.Figure.write_image
go.Figure.write_image = lambda self, p, *a, **k: orig_write(
self, os.path.join(TMP, os.path.basename(p)), *a, **k
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 1) Local helpers & DB connector
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
from tools.csv_parser import parse_csv_tool
from tools.plot_generator import plot_metric_tool
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 2) Gemini 1.5ย Pro
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
gemini = genai.GenerativeModel(
"gemini-1.5-pro-latest",
generation_config=dict(temperature=0.7, top_p=0.9, response_mime_type="text/plain"),
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 3) Streamlit setup
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
st.set_page_config(page_title="BizIntelย AIย Ultra", layout="wide")
st.title("๐ย BizIntelย AIย Ultraย โ Advanced Analyticsย +ย Geminiย 1.5ย Pro")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 4) Data source
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
choice = st.radio("Select data source", ["Upload CSVย /ย Excel", "Connect to SQL Database"])
csv_path: str | None = None
if choice.startswith("Upload"):
up = st.file_uploader("CSVย orย Excelย (โคโฏ500โฏMB)", type=["csv","xlsx","xls"])
if up:
tmp = os.path.join(TMP, up.name)
with open(tmp, "wb") as f: f.write(up.read())
if up.name.lower().endswith(".csv"):
csv_path = tmp
else:
try:
pd.read_excel(tmp, sheet_name=0).to_csv(tmp+".csv", index=False)
csv_path = tmp+".csv"
except Exception as e:
st.error(f"Excel parse failed: {e}")
else:
eng = st.selectbox("DB engine", SUPPORTED_ENGINES)
conn = st.text_input("SQLAlchemyย connection string")
if conn:
try:
tbl = st.selectbox("Table", list_tables(conn))
if st.button("Fetch table"):
csv_path = fetch_data_from_db(conn, tbl)
st.success(f"Fetched **{tbl}**")
except Exception as e:
st.error(f"DB error: {e}")
if not csv_path:
st.stop()
with open(csv_path, "rb") as f:
st.download_button("โฌ๏ธย Download working CSV", f, file_name=os.path.basename(csv_path))
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 5) Column selectors
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
df_head = pd.read_csv(csv_path, nrows=5)
st.dataframe(df_head)
date_col = st.selectbox("Date/time column", df_head.columns)
numeric_cols = df_head.select_dtypes("number").columns.tolist()
metric_options = [c for c in numeric_cols if c != date_col]
if not metric_options:
st.error("No numeric columns available apart from the date column.")
st.stop()
metric_col = st.selectbox("Numeric metric column", metric_options)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 6) Summary & trend chart
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
summary = parse_csv_tool(csv_path)
trend_fig = plot_metric_tool(csv_path, date_col, metric_col)
if isinstance(trend_fig, go.Figure):
st.subheader("๐ย Trend")
st.plotly_chart(trend_fig, use_container_width=True)
else:
st.warning(trend_fig)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 7) Robust ARIMA + explainability
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def build_series(path, dcol, vcol):
df = pd.read_csv(path, usecols=[dcol, vcol])
df[dcol] = pd.to_datetime(df[dcol], errors="coerce")
df[vcol] = pd.to_numeric(df[vcol], errors="coerce")
df = df.dropna(subset=[dcol, vcol]).sort_values(dcol)
if df.empty or df[dcol].nunique() < 2:
raise ValueError("Need โฅโฏ2 valid timestamps.")
s = df.set_index(dcol)[vcol].groupby(level=0).mean().sort_index()
freq = pd.infer_freq(s.index) or "D"
s = s.asfreq(freq).interpolate()
return s, freq
@st.cache_data(show_spinner="Fitting ARIMAโฆ")
def fit_arima(series):
warnings.simplefilter("ignore", ConvergenceWarning)
model = ARIMA(series, order=(1,1,1))
return model.fit()
try:
series, freq = build_series(csv_path, date_col, metric_col)
horizon = 90 if freq == "D" else 3
res = fit_arima(series)
fc = res.get_forecast(steps=horizon)
forecast = fc.predicted_mean
ci = fc.conf_int()
except Exception as e:
st.subheader(f"๐ฎย {metric_col}ย Forecast")
st.warning(f"Forecast failed: {e}")
series = forecast = ci = None
if forecast is not None:
# Plot with CI
fig = go.Figure()
fig.add_scatter(x=series.index, y=series, mode="lines", name=metric_col)
fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast")
fig.add_scatter(x=ci.index, y=ci.iloc[:,1], mode="lines",
line=dict(width=0), showlegend=False)
fig.add_scatter(x=ci.index, y=ci.iloc[:,0], mode="lines",
line=dict(width=0), fill="tonexty",
fillcolor="rgba(255,0,0,0.25)", showlegend=False)
fig.update_layout(title=f"{metric_col} Forecast ({horizon}ย steps)",
template="plotly_dark", xaxis_title=date_col,
yaxis_title=metric_col)
st.subheader(f"๐ฎย {metric_col}ย Forecast")
st.plotly_chart(fig, use_container_width=True)
# ---------------- summary & interpretation ----------------
st.subheader("๐ย Model Summary")
st.code(res.summary().as_text(), language="text")
st.subheader("๐ย Coefficient Interpretation")
ar = res.arparams
ma = res.maparams
interp: List[str] = []
if ar.size:
interp.append(f"โขย AR(1)ย ={ar[0]:.2f} โ "
f"{'strong' if abs(ar[0])>0.5 else 'moderate'} "
"persistence in the series.")
if ma.size:
interp.append(f"โขย MA(1)ย ={ma[0]:.2f} โ "
f"{'large' if abs(ma[0])>0.5 else 'modest'} "
"shock adjustment.")
st.markdown("\n".join(interp) or "N/A")
# ---------------- Residual ACF ----------------
st.subheader("๐ย Residual Autocorrelation (ACF)")
plt.figure(figsize=(6,3))
plot_acf(res.resid.dropna(), lags=30, alpha=0.05)
acf_png = os.path.join(TMP, "acf.png")
plt.tight_layout()
plt.savefig(acf_png, dpi=120)
plt.close()
st.image(acf_png, use_container_width=True)
# ---------------- Backโtest ----------------
k = max(int(len(series)*0.2), 10)
train, test = series[:-k], series[-k:]
bt_res = ARIMA(train, order=(1,1,1)).fit()
bt_pred = bt_res.forecast(k)
mape = (abs(bt_pred - test)/test).mean()*100
rmse = np.sqrt(((bt_pred - test)**2).mean())
st.subheader("๐งชย Backโtest (last 20โฏ%)")
colA, colB = st.columns(2)
colA.metric("MAPE", f"{mape:.2f}ย %")
colB.metric("RMSE", f"{rmse:,.0f}")
# ---------------- Optional seasonal decomposition -------
with st.expander("Seasonal Decomposition"):
try:
period = {"D":7, "H":24, "M":12}.get(freq, None)
if period:
dec = seasonal_decompose(series, period=period, model="additive")
for comp in ["trend","seasonal","resid"]:
st.line_chart(getattr(dec, comp), height=150)
else:
st.info("Frequency not suited for decomposition.")
except Exception as e:
st.info(f"Decomposition failed: {e}")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 8) Gemini strategy report
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
prompt = (
"You are **BizIntel Strategist AI**.\n\n"
f"### Dataset Summary\n```\n{summary}\n```\n\n"
f"### {metric_col} Forecast\n```\n"
f"{forecast.to_string() if forecast is not None else 'N/A'}\n```\n\n"
"Craft a Markdown report:\n"
"1. Five insights\n2. Three actionable strategies\n"
"3. Risksย / anomalies\n4. Extra visuals to consider."
)
with st.spinner("Gemini generating strategyโฆ"):
md = gemini.generate_content(prompt).text
st.subheader("๐ย Strategyย Recommendationsย (Geminiย 1.5ย Pro)")
st.markdown(md)
st.download_button("โฌ๏ธย Downloadย Strategy (.md)", md, file_name="strategy.md")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 9) KPI cards + detailed stats + optional EDA (unchanged)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
fulldf = pd.read_csv(csv_path, low_memory=False)
rows, cols = fulldf.shape
miss_pct = fulldf.isna().mean().mean()*100
st.markdown("---")
st.subheader("๐ย Datasetย Overview")
c1,c2,c3 = st.columns(3)
c1.metric("Rows", f"{rows:,}")
c2.metric("Columns", cols)
c3.metric("Missingย %", f"{miss_pct:.1f}%")
with st.expander("Descriptiveย Statistics"):
st.dataframe(fulldf.describe().T.style.format(precision=2).background_gradient("Blues"),
use_container_width=True)
st.markdown("---")
st.subheader("๐ย Optionalย Exploratoryย Visuals")
num_cols = fulldf.select_dtypes("number").columns.tolist()
if st.checkbox("Histogram"):
st.plotly_chart(histogram_tool(csv_path, st.selectbox("Var", num_cols, key="hist")),
use_container_width=True)
if st.checkbox("Scatterย Matrix"):
sel = st.multiselect("Columns", num_cols, default=num_cols[:3])
if sel:
st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True)
if st.checkbox("Correlationย Heatโmap"):
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|