Spaces:
Sleeping
Sleeping
File size: 6,214 Bytes
df65c2e dc5ae18 df65c2e 9538f35 df65c2e bf400de 9538f35 bf400de df65c2e 9538f35 df65c2e bf400de df65c2e dc5ae18 9538f35 df65c2e dc5ae18 df65c2e dc5ae18 df65c2e dc5ae18 9538f35 df65c2e 9538f35 df65c2e 9538f35 df65c2e dc5ae18 df65c2e 9538f35 dc5ae18 9538f35 df65c2e dc5ae18 df65c2e 9538f35 df65c2e 9538f35 df65c2e dc5ae18 9538f35 df65c2e 9538f35 df65c2e 9538f35 df65c2e 9538f35 df65c2e 9538f35 df65c2e 9538f35 df65c2e 9538f35 df65c2e 9538f35 df65c2e 9538f35 dc5ae18 df65c2e dc5ae18 9538f35 dc5ae18 df65c2e dc5ae18 df65c2e dc5ae18 df65c2e dc5ae18 df65c2e 9538f35 df65c2e dc5ae18 9538f35 df65c2e 9538f35 dc5ae18 bf400de df65c2e bf400de df65c2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# tools/visuals.py — reusable Plotly helpers
# ------------------------------------------------------------
import os
import tempfile
from typing import List, Tuple, Union
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from scipy.cluster.hierarchy import linkage, leaves_list
# -----------------------------------------------------------------
# Typing alias: every helper returns a plotly.graph_objects.Figure
# -----------------------------------------------------------------
Plot = go.Figure
# -----------------------------------------------------------------
# Utility: save figure to high‑res PNG under a writable dir (/tmp)
# -----------------------------------------------------------------
def _save_fig(fig: Plot, prefix: str, outdir: str = "/tmp") -> str:
os.makedirs(outdir, exist_ok=True)
tmp = tempfile.NamedTemporaryFile(
prefix=prefix, suffix=".png", dir=outdir, delete=False
)
fig.write_image(tmp.name, scale=3)
return tmp.name
# -----------------------------------------------------------------
# 1) Histogram (+ optional KDE)
# -----------------------------------------------------------------
def histogram_tool(
file_path: str,
column: str,
bins: int = 30,
kde: bool = True,
output_dir: str = "/tmp",
) -> Union[Tuple[Plot, str], str]:
ext = os.path.splitext(file_path)[1].lower()
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
if column not in df.columns:
return f"❌ Column '{column}' not found."
series = pd.to_numeric(df[column], errors="coerce").dropna()
if series.empty:
return f"❌ No numeric data in '{column}'."
if kde:
# density + hist using numpy histogram
hist, edges = np.histogram(series, bins=bins)
fig = go.Figure()
fig.add_bar(x=edges[:-1], y=hist, name="Histogram")
fig.add_scatter(
x=np.linspace(series.min(), series.max(), 500),
y=np.exp(np.poly1d(np.polyfit(series, np.log(series.rank()), 1))(
np.linspace(series.min(), series.max(), 500)
)),
mode="lines",
name="KDE (approx)",
)
else:
fig = px.histogram(
series, nbins=bins, title=f"Histogram – {column}", template="plotly_dark"
)
fig.update_layout(template="plotly_dark")
return fig, _save_fig(fig, f"hist_{column}_", output_dir)
# -----------------------------------------------------------------
# 2) Box plot
# -----------------------------------------------------------------
def boxplot_tool(
file_path: str,
column: str,
output_dir: str = "/tmp",
) -> Union[Tuple[Plot, str], str]:
ext = os.path.splitext(file_path)[1].lower()
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
if column not in df.columns:
return f"❌ Column '{column}' not found."
series = pd.to_numeric(df[column], errors="coerce").dropna()
if series.empty:
return f"❌ No numeric data in '{column}'."
fig = px.box(
series, points="outliers", title=f"Boxplot – {column}", template="plotly_dark"
)
return fig, _save_fig(fig, f"box_{column}_", output_dir)
# -----------------------------------------------------------------
# 3) Violin plot
# -----------------------------------------------------------------
def violin_tool(
file_path: str,
column: str,
output_dir: str = "/tmp",
) -> Union[Tuple[Plot, str], str]:
ext = os.path.splitext(file_path)[1].lower()
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
if column not in df.columns:
return f"❌ Column '{column}' not found."
series = pd.to_numeric(df[column], errors="coerce").dropna()
if series.empty:
return f"❌ No numeric data in '{column}'."
fig = px.violin(
series, box=True, points="all", title=f"Violin – {column}", template="plotly_dark"
)
return fig, _save_fig(fig, f"violin_{column}_", output_dir)
# -----------------------------------------------------------------
# 4) Scatter‑matrix
# -----------------------------------------------------------------
def scatter_matrix_tool(
file_path: str,
columns: List[str],
output_dir: str = "/tmp",
size: int = 5,
) -> Union[Tuple[Plot, str], str]:
ext = os.path.splitext(file_path)[1].lower()
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
missing = [c for c in columns if c not in df.columns]
if missing:
return f"❌ Missing columns: {', '.join(missing)}"
df_num = df[columns].apply(pd.to_numeric, errors="coerce").dropna()
if df_num.empty:
return "❌ No valid numeric data."
fig = px.scatter_matrix(
df_num, dimensions=columns, title="Scatter Matrix", template="plotly_dark"
)
fig.update_traces(diagonal_visible=False, marker=dict(size=size))
return fig, _save_fig(fig, "scatter_matrix_", output_dir)
# -----------------------------------------------------------------
# 5) Correlation heat‑map (optional clustering)
# -----------------------------------------------------------------
def corr_heatmap_tool(
file_path: str,
columns: List[str] | None = None,
output_dir: str = "/tmp",
cluster: bool = True,
) -> Union[Tuple[Plot, str], str]:
ext = os.path.splitext(file_path)[1].lower()
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
df_num = df.select_dtypes("number") if columns is None else df[columns]
df_num = df_num.apply(pd.to_numeric, errors="coerce").dropna(axis=1, how="all")
if df_num.shape[1] < 2:
return "❌ Need ≥ 2 numeric columns."
corr = df_num.corr()
if cluster:
order = leaves_list(linkage(corr, "average"))
corr = corr.iloc[order, order]
fig = px.imshow(
corr,
color_continuous_scale="RdBu",
title="Correlation Heat‑map",
labels=dict(color="ρ"),
template="plotly_dark",
)
return fig, _save_fig(fig, "corr_heatmap_", output_dir)
|