File size: 6,214 Bytes
df65c2e
 
 
dc5ae18
 
df65c2e
 
9538f35
df65c2e
bf400de
9538f35
 
bf400de
df65c2e
 
 
 
9538f35
df65c2e
 
 
 
 
 
 
 
 
 
 
bf400de
 
df65c2e
 
 
dc5ae18
 
 
9538f35
 
df65c2e
 
dc5ae18
df65c2e
dc5ae18
 
 
df65c2e
dc5ae18
9538f35
 
 
df65c2e
 
 
 
 
 
 
 
 
 
 
 
9538f35
df65c2e
 
 
9538f35
df65c2e
 
dc5ae18
 
df65c2e
 
 
9538f35
dc5ae18
9538f35
df65c2e
 
dc5ae18
df65c2e
9538f35
 
df65c2e
9538f35
 
 
df65c2e
 
 
 
dc5ae18
9538f35
df65c2e
 
 
9538f35
 
 
df65c2e
 
9538f35
df65c2e
9538f35
 
df65c2e
9538f35
 
 
df65c2e
 
 
 
9538f35
 
df65c2e
 
 
9538f35
 
 
df65c2e
 
 
9538f35
df65c2e
 
9538f35
dc5ae18
 
df65c2e
dc5ae18
9538f35
dc5ae18
df65c2e
 
 
 
 
dc5ae18
 
df65c2e
 
 
dc5ae18
 
df65c2e
 
 
 
dc5ae18
df65c2e
 
 
 
9538f35
df65c2e
dc5ae18
 
9538f35
df65c2e
9538f35
dc5ae18
bf400de
 
df65c2e
 
 
 
bf400de
df65c2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# tools/visuals.py  —  reusable Plotly helpers
# ------------------------------------------------------------

import os
import tempfile
from typing import List, Tuple, Union

import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from scipy.cluster.hierarchy import linkage, leaves_list

# -----------------------------------------------------------------
# Typing alias: every helper returns a plotly.graph_objects.Figure
# -----------------------------------------------------------------
Plot = go.Figure


# -----------------------------------------------------------------
# Utility: save figure to high‑res PNG under a writable dir (/tmp)
# -----------------------------------------------------------------
def _save_fig(fig: Plot, prefix: str, outdir: str = "/tmp") -> str:
    os.makedirs(outdir, exist_ok=True)
    tmp = tempfile.NamedTemporaryFile(
        prefix=prefix, suffix=".png", dir=outdir, delete=False
    )
    fig.write_image(tmp.name, scale=3)
    return tmp.name


# -----------------------------------------------------------------
# 1) Histogram (+ optional KDE)
# -----------------------------------------------------------------
def histogram_tool(
    file_path: str,
    column: str,
    bins: int = 30,
    kde: bool = True,
    output_dir: str = "/tmp",
) -> Union[Tuple[Plot, str], str]:
    ext = os.path.splitext(file_path)[1].lower()
    df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)

    if column not in df.columns:
        return f"❌ Column '{column}' not found."
    series = pd.to_numeric(df[column], errors="coerce").dropna()
    if series.empty:
        return f"❌ No numeric data in '{column}'."

    if kde:
        # density + hist using numpy histogram
        hist, edges = np.histogram(series, bins=bins)
        fig = go.Figure()
        fig.add_bar(x=edges[:-1], y=hist, name="Histogram")
        fig.add_scatter(
            x=np.linspace(series.min(), series.max(), 500),
            y=np.exp(np.poly1d(np.polyfit(series, np.log(series.rank()), 1))(
                np.linspace(series.min(), series.max(), 500)
            )),
            mode="lines",
            name="KDE (approx)",
        )
    else:
        fig = px.histogram(
            series, nbins=bins, title=f"Histogram – {column}", template="plotly_dark"
        )

    fig.update_layout(template="plotly_dark")
    return fig, _save_fig(fig, f"hist_{column}_", output_dir)


# -----------------------------------------------------------------
# 2) Box plot
# -----------------------------------------------------------------
def boxplot_tool(
    file_path: str,
    column: str,
    output_dir: str = "/tmp",
) -> Union[Tuple[Plot, str], str]:
    ext = os.path.splitext(file_path)[1].lower()
    df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
    if column not in df.columns:
        return f"❌ Column '{column}' not found."
    series = pd.to_numeric(df[column], errors="coerce").dropna()
    if series.empty:
        return f"❌ No numeric data in '{column}'."

    fig = px.box(
        series, points="outliers", title=f"Boxplot – {column}", template="plotly_dark"
    )
    return fig, _save_fig(fig, f"box_{column}_", output_dir)


# -----------------------------------------------------------------
# 3) Violin plot
# -----------------------------------------------------------------
def violin_tool(
    file_path: str,
    column: str,
    output_dir: str = "/tmp",
) -> Union[Tuple[Plot, str], str]:
    ext = os.path.splitext(file_path)[1].lower()
    df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
    if column not in df.columns:
        return f"❌ Column '{column}' not found."
    series = pd.to_numeric(df[column], errors="coerce").dropna()
    if series.empty:
        return f"❌ No numeric data in '{column}'."

    fig = px.violin(
        series, box=True, points="all", title=f"Violin – {column}", template="plotly_dark"
    )
    return fig, _save_fig(fig, f"violin_{column}_", output_dir)


# -----------------------------------------------------------------
# 4) Scatter‑matrix
# -----------------------------------------------------------------
def scatter_matrix_tool(
    file_path: str,
    columns: List[str],
    output_dir: str = "/tmp",
    size: int = 5,
) -> Union[Tuple[Plot, str], str]:
    ext = os.path.splitext(file_path)[1].lower()
    df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)

    missing = [c for c in columns if c not in df.columns]
    if missing:
        return f"❌ Missing columns: {', '.join(missing)}"
    df_num = df[columns].apply(pd.to_numeric, errors="coerce").dropna()
    if df_num.empty:
        return "❌ No valid numeric data."

    fig = px.scatter_matrix(
        df_num, dimensions=columns, title="Scatter Matrix", template="plotly_dark"
    )
    fig.update_traces(diagonal_visible=False, marker=dict(size=size))
    return fig, _save_fig(fig, "scatter_matrix_", output_dir)


# -----------------------------------------------------------------
# 5) Correlation heat‑map (optional clustering)
# -----------------------------------------------------------------
def corr_heatmap_tool(
    file_path: str,
    columns: List[str] | None = None,
    output_dir: str = "/tmp",
    cluster: bool = True,
) -> Union[Tuple[Plot, str], str]:
    ext = os.path.splitext(file_path)[1].lower()
    df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)

    df_num = df.select_dtypes("number") if columns is None else df[columns]
    df_num = df_num.apply(pd.to_numeric, errors="coerce").dropna(axis=1, how="all")
    if df_num.shape[1] < 2:
        return "❌ Need ≥ 2 numeric columns."

    corr = df_num.corr()
    if cluster:
        order = leaves_list(linkage(corr, "average"))
        corr = corr.iloc[order, order]

    fig = px.imshow(
        corr,
        color_continuous_scale="RdBu",
        title="Correlation Heat‑map",
        labels=dict(color="ρ"),
        template="plotly_dark",
    )
    return fig, _save_fig(fig, "corr_heatmap_", output_dir)