Spaces:
Sleeping
Sleeping
Update tools/visuals.py
Browse files- tools/visuals.py +99 -90
tools/visuals.py
CHANGED
@@ -1,163 +1,172 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
-
import
|
|
|
4 |
import numpy as np
|
|
|
5 |
import plotly.express as px
|
6 |
-
import plotly.figure_factory as ff
|
7 |
import plotly.graph_objects as go
|
8 |
from scipy.cluster.hierarchy import linkage, leaves_list
|
9 |
-
from typing import Union, Tuple, List
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
|
|
|
|
|
|
|
24 |
def histogram_tool(
|
25 |
file_path: str,
|
26 |
column: str,
|
27 |
bins: int = 30,
|
28 |
kde: bool = True,
|
29 |
-
output_dir: str =
|
30 |
-
) -> Union[Tuple[
|
31 |
-
"""
|
32 |
-
Create a histogram with optional KDE overlay for a given numeric column.
|
33 |
-
|
34 |
-
Returns (figure, png_path) or error string.
|
35 |
-
"""
|
36 |
-
# Load
|
37 |
ext = os.path.splitext(file_path)[1].lower()
|
38 |
-
df = pd.read_excel(file_path) if ext in (
|
39 |
|
40 |
-
# Validate
|
41 |
if column not in df.columns:
|
42 |
return f"❌ Column '{column}' not found."
|
43 |
-
series = pd.to_numeric(df[column], errors=
|
44 |
if series.empty:
|
45 |
return f"❌ No numeric data in '{column}'."
|
46 |
|
47 |
-
# Build histogram + KDE
|
48 |
if kde:
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
else:
|
51 |
-
fig = px.histogram(
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
return fig, img_path
|
57 |
|
58 |
|
|
|
|
|
|
|
59 |
def boxplot_tool(
|
60 |
file_path: str,
|
61 |
column: str,
|
62 |
-
output_dir: str =
|
63 |
-
) -> Union[Tuple[
|
64 |
-
"""
|
65 |
-
Create a box plot with outliers for a numeric column.
|
66 |
-
|
67 |
-
Returns (figure, png_path) or error string.
|
68 |
-
"""
|
69 |
ext = os.path.splitext(file_path)[1].lower()
|
70 |
-
df = pd.read_excel(file_path) if ext in (
|
71 |
if column not in df.columns:
|
72 |
return f"❌ Column '{column}' not found."
|
73 |
-
series = pd.to_numeric(df[column], errors=
|
74 |
if series.empty:
|
75 |
return f"❌ No numeric data in '{column}'."
|
76 |
|
77 |
-
fig = px.box(
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
|
|
|
|
|
|
|
82 |
def violin_tool(
|
83 |
file_path: str,
|
84 |
column: str,
|
85 |
-
output_dir: str =
|
86 |
-
) -> Union[Tuple[
|
87 |
-
"""
|
88 |
-
Create a violin plot with inner box for a numeric column.
|
89 |
-
|
90 |
-
Returns (figure, png_path) or error string.
|
91 |
-
"""
|
92 |
ext = os.path.splitext(file_path)[1].lower()
|
93 |
-
df = pd.read_excel(file_path) if ext in (
|
94 |
if column not in df.columns:
|
95 |
return f"❌ Column '{column}' not found."
|
96 |
-
series = pd.to_numeric(df[column], errors=
|
97 |
if series.empty:
|
98 |
return f"❌ No numeric data in '{column}'."
|
99 |
|
100 |
-
fig = px.violin(
|
101 |
-
|
102 |
-
|
|
|
103 |
|
104 |
|
|
|
|
|
|
|
105 |
def scatter_matrix_tool(
|
106 |
file_path: str,
|
107 |
columns: List[str],
|
108 |
-
output_dir: str =
|
109 |
-
size: int = 5
|
110 |
-
) -> Union[Tuple[
|
111 |
-
"""
|
112 |
-
Create an interactive scatter matrix for selected numeric columns.
|
113 |
-
|
114 |
-
Returns (figure, png_path) or error string.
|
115 |
-
"""
|
116 |
ext = os.path.splitext(file_path)[1].lower()
|
117 |
-
df = pd.read_excel(file_path) if ext in (
|
|
|
118 |
missing = [c for c in columns if c not in df.columns]
|
119 |
if missing:
|
120 |
return f"❌ Missing columns: {', '.join(missing)}"
|
121 |
-
df_num = df[columns].apply(pd.to_numeric, errors=
|
122 |
if df_num.empty:
|
123 |
return "❌ No valid numeric data."
|
124 |
|
125 |
-
fig = px.scatter_matrix(
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
|
130 |
|
|
|
|
|
|
|
131 |
def corr_heatmap_tool(
|
132 |
file_path: str,
|
133 |
-
columns: List[str] = None,
|
134 |
-
output_dir: str =
|
135 |
-
cluster: bool = True
|
136 |
-
) -> Union[Tuple[
|
137 |
-
"""
|
138 |
-
Create a correlation heatmap, with optional hierarchical clustering of variables.
|
139 |
-
|
140 |
-
Returns (figure, png_path) or error string.
|
141 |
-
"""
|
142 |
ext = os.path.splitext(file_path)[1].lower()
|
143 |
-
df = pd.read_excel(file_path) if ext in (
|
144 |
-
|
145 |
-
df_num =
|
|
|
146 |
if df_num.shape[1] < 2:
|
147 |
-
return "❌ Need
|
148 |
|
149 |
corr = df_num.corr()
|
150 |
if cluster:
|
151 |
-
|
152 |
-
order = leaves_list(link)
|
153 |
corr = corr.iloc[order, order]
|
154 |
|
155 |
fig = px.imshow(
|
156 |
corr,
|
157 |
-
color_continuous_scale=
|
158 |
-
title="Correlation
|
159 |
-
labels=dict(color="
|
160 |
-
template=
|
161 |
)
|
162 |
-
|
163 |
-
return fig, img_path
|
|
|
1 |
+
# tools/visuals.py — reusable Plotly helpers
|
2 |
+
# ------------------------------------------------------------
|
3 |
+
|
4 |
import os
|
5 |
import tempfile
|
6 |
+
from typing import List, Tuple, Union
|
7 |
+
|
8 |
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
import plotly.express as px
|
|
|
11 |
import plotly.graph_objects as go
|
12 |
from scipy.cluster.hierarchy import linkage, leaves_list
|
|
|
13 |
|
14 |
+
# -----------------------------------------------------------------
|
15 |
+
# Typing alias: every helper returns a plotly.graph_objects.Figure
|
16 |
+
# -----------------------------------------------------------------
|
17 |
+
Plot = go.Figure
|
18 |
|
19 |
+
|
20 |
+
# -----------------------------------------------------------------
|
21 |
+
# Utility: save figure to high‑res PNG under a writable dir (/tmp)
|
22 |
+
# -----------------------------------------------------------------
|
23 |
+
def _save_fig(fig: Plot, prefix: str, outdir: str = "/tmp") -> str:
|
24 |
+
os.makedirs(outdir, exist_ok=True)
|
25 |
+
tmp = tempfile.NamedTemporaryFile(
|
26 |
+
prefix=prefix, suffix=".png", dir=outdir, delete=False
|
27 |
+
)
|
28 |
+
fig.write_image(tmp.name, scale=3)
|
29 |
+
return tmp.name
|
30 |
|
31 |
|
32 |
+
# -----------------------------------------------------------------
|
33 |
+
# 1) Histogram (+ optional KDE)
|
34 |
+
# -----------------------------------------------------------------
|
35 |
def histogram_tool(
|
36 |
file_path: str,
|
37 |
column: str,
|
38 |
bins: int = 30,
|
39 |
kde: bool = True,
|
40 |
+
output_dir: str = "/tmp",
|
41 |
+
) -> Union[Tuple[Plot, str], str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
ext = os.path.splitext(file_path)[1].lower()
|
43 |
+
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
|
44 |
|
|
|
45 |
if column not in df.columns:
|
46 |
return f"❌ Column '{column}' not found."
|
47 |
+
series = pd.to_numeric(df[column], errors="coerce").dropna()
|
48 |
if series.empty:
|
49 |
return f"❌ No numeric data in '{column}'."
|
50 |
|
|
|
51 |
if kde:
|
52 |
+
# density + hist using numpy histogram
|
53 |
+
hist, edges = np.histogram(series, bins=bins)
|
54 |
+
fig = go.Figure()
|
55 |
+
fig.add_bar(x=edges[:-1], y=hist, name="Histogram")
|
56 |
+
fig.add_scatter(
|
57 |
+
x=np.linspace(series.min(), series.max(), 500),
|
58 |
+
y=np.exp(np.poly1d(np.polyfit(series, np.log(series.rank()), 1))(
|
59 |
+
np.linspace(series.min(), series.max(), 500)
|
60 |
+
)),
|
61 |
+
mode="lines",
|
62 |
+
name="KDE (approx)",
|
63 |
+
)
|
64 |
else:
|
65 |
+
fig = px.histogram(
|
66 |
+
series, nbins=bins, title=f"Histogram – {column}", template="plotly_dark"
|
67 |
+
)
|
68 |
|
69 |
+
fig.update_layout(template="plotly_dark")
|
70 |
+
return fig, _save_fig(fig, f"hist_{column}_", output_dir)
|
|
|
71 |
|
72 |
|
73 |
+
# -----------------------------------------------------------------
|
74 |
+
# 2) Box plot
|
75 |
+
# -----------------------------------------------------------------
|
76 |
def boxplot_tool(
|
77 |
file_path: str,
|
78 |
column: str,
|
79 |
+
output_dir: str = "/tmp",
|
80 |
+
) -> Union[Tuple[Plot, str], str]:
|
|
|
|
|
|
|
|
|
|
|
81 |
ext = os.path.splitext(file_path)[1].lower()
|
82 |
+
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
|
83 |
if column not in df.columns:
|
84 |
return f"❌ Column '{column}' not found."
|
85 |
+
series = pd.to_numeric(df[column], errors="coerce").dropna()
|
86 |
if series.empty:
|
87 |
return f"❌ No numeric data in '{column}'."
|
88 |
|
89 |
+
fig = px.box(
|
90 |
+
series, points="outliers", title=f"Boxplot ��� {column}", template="plotly_dark"
|
91 |
+
)
|
92 |
+
return fig, _save_fig(fig, f"box_{column}_", output_dir)
|
93 |
|
94 |
|
95 |
+
# -----------------------------------------------------------------
|
96 |
+
# 3) Violin plot
|
97 |
+
# -----------------------------------------------------------------
|
98 |
def violin_tool(
|
99 |
file_path: str,
|
100 |
column: str,
|
101 |
+
output_dir: str = "/tmp",
|
102 |
+
) -> Union[Tuple[Plot, str], str]:
|
|
|
|
|
|
|
|
|
|
|
103 |
ext = os.path.splitext(file_path)[1].lower()
|
104 |
+
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
|
105 |
if column not in df.columns:
|
106 |
return f"❌ Column '{column}' not found."
|
107 |
+
series = pd.to_numeric(df[column], errors="coerce").dropna()
|
108 |
if series.empty:
|
109 |
return f"❌ No numeric data in '{column}'."
|
110 |
|
111 |
+
fig = px.violin(
|
112 |
+
series, box=True, points="all", title=f"Violin – {column}", template="plotly_dark"
|
113 |
+
)
|
114 |
+
return fig, _save_fig(fig, f"violin_{column}_", output_dir)
|
115 |
|
116 |
|
117 |
+
# -----------------------------------------------------------------
|
118 |
+
# 4) Scatter‑matrix
|
119 |
+
# -----------------------------------------------------------------
|
120 |
def scatter_matrix_tool(
|
121 |
file_path: str,
|
122 |
columns: List[str],
|
123 |
+
output_dir: str = "/tmp",
|
124 |
+
size: int = 5,
|
125 |
+
) -> Union[Tuple[Plot, str], str]:
|
|
|
|
|
|
|
|
|
|
|
126 |
ext = os.path.splitext(file_path)[1].lower()
|
127 |
+
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
|
128 |
+
|
129 |
missing = [c for c in columns if c not in df.columns]
|
130 |
if missing:
|
131 |
return f"❌ Missing columns: {', '.join(missing)}"
|
132 |
+
df_num = df[columns].apply(pd.to_numeric, errors="coerce").dropna()
|
133 |
if df_num.empty:
|
134 |
return "❌ No valid numeric data."
|
135 |
|
136 |
+
fig = px.scatter_matrix(
|
137 |
+
df_num, dimensions=columns, title="Scatter Matrix", template="plotly_dark"
|
138 |
+
)
|
139 |
+
fig.update_traces(diagonal_visible=False, marker=dict(size=size))
|
140 |
+
return fig, _save_fig(fig, "scatter_matrix_", output_dir)
|
141 |
|
142 |
|
143 |
+
# -----------------------------------------------------------------
|
144 |
+
# 5) Correlation heat‑map (optional clustering)
|
145 |
+
# -----------------------------------------------------------------
|
146 |
def corr_heatmap_tool(
|
147 |
file_path: str,
|
148 |
+
columns: List[str] | None = None,
|
149 |
+
output_dir: str = "/tmp",
|
150 |
+
cluster: bool = True,
|
151 |
+
) -> Union[Tuple[Plot, str], str]:
|
|
|
|
|
|
|
|
|
|
|
152 |
ext = os.path.splitext(file_path)[1].lower()
|
153 |
+
df = pd.read_excel(file_path) if ext in (".xls", ".xlsx") else pd.read_csv(file_path)
|
154 |
+
|
155 |
+
df_num = df.select_dtypes("number") if columns is None else df[columns]
|
156 |
+
df_num = df_num.apply(pd.to_numeric, errors="coerce").dropna(axis=1, how="all")
|
157 |
if df_num.shape[1] < 2:
|
158 |
+
return "❌ Need ≥ 2 numeric columns."
|
159 |
|
160 |
corr = df_num.corr()
|
161 |
if cluster:
|
162 |
+
order = leaves_list(linkage(corr, "average"))
|
|
|
163 |
corr = corr.iloc[order, order]
|
164 |
|
165 |
fig = px.imshow(
|
166 |
corr,
|
167 |
+
color_continuous_scale="RdBu",
|
168 |
+
title="Correlation Heat‑map",
|
169 |
+
labels=dict(color="ρ"),
|
170 |
+
template="plotly_dark",
|
171 |
)
|
172 |
+
return fig, _save_fig(fig, "corr_heatmap_", output_dir)
|
|