BizIntel_AI / app.py
mgbam's picture
Update app.py
0a40e29 verified
raw
history blame
8.03 kB
import streamlit as st
import pandas as pd
import numpy as np
import tempfile
from io import BytesIO
from sqlalchemy import create_engine
import plotly.express as px
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
# ── Helpers to read CSV/Excel robustly ───────────────────────────────────────────
@st.cache_data
def load_file(uploaded):
"""Read a CSV or Excel file into a DataFrame."""
try:
if uploaded.name.lower().endswith((".xls", ".xlsx")):
return pd.read_excel(uploaded, engine="openpyxl")
else:
return pd.read_csv(uploaded)
except Exception as e:
raise st.Error(f"Error parsing file: {e}")
# ── Helpers for SQL database ────────────────────────────────────────────────────
SUPPORTED_ENGINES = ["postgresql", "mysql", "mssql+pyodbc", "oracle+cx_oracle"]
@st.cache_data
def list_tables(connection_string):
engine = create_engine(connection_string)
return engine.table_names()
@st.cache_data
def fetch_table(connection_string, table_name):
engine = create_engine(connection_string)
return pd.read_sql_table(table_name, engine)
# ── Streamlit page setup ────────────────────────────────────────────────────────
st.set_page_config(
page_title="BizIntel AI Ultra",
layout="wide",
initial_sidebar_state="expanded",
)
st.title("πŸ“Š BizIntel AI Ultra – Advanced Analytics + Gemini 1.5 Pro")
# ── Data source selection ───────────────────────────────────────────────────────
data_source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])
df = None
if data_source == "Upload CSV / Excel":
uploaded = st.file_uploader(
"Drag & drop file here (≀ 500 MB)",
type=["csv", "xls", "xlsx"],
accept_multiple_files=False,
)
if uploaded:
with st.spinner("Loading file…"):
df = load_file(uploaded)
st.success("βœ… File loaded into memory")
elif data_source == "Connect to SQL Database":
engine = st.selectbox("Select DB engine", SUPPORTED_ENGINES)
conn_str = st.text_input("Connection string (SQLAlchemy format)", placeholder="e.g. postgresql://user:pass@host:port/dbname")
if conn_str:
tables = list_tables(conn_str)
table = st.selectbox("Choose table", tables)
if table:
with st.spinner(f"Fetching `{table}`…"):
df = fetch_table(conn_str, table)
st.success(f"βœ… `{table}` loaded from database")
# ── If DataFrame is ready, show overview and proceed ───────────────────────────
if df is not None:
st.markdown("### πŸ—‚οΈ Preview")
st.dataframe(df.head(5), use_container_width=True)
# Dataset overview metrics
n_rows, n_cols = df.shape
missing_pct = (df.isna().sum().sum() / (n_rows * n_cols)) * 100
st.markdown("---")
c1, c2, c3 = st.columns(3)
c1.metric("Rows", f"{n_rows:,}")
c2.metric("Columns", f"{n_cols:,}")
c3.metric("Missing %", f"{missing_pct:.1f}%")
# Detailed stats
st.markdown("#### πŸ“‹ Detailed descriptive statistics")
st.dataframe(df.describe(include="all").transpose(), use_container_width=True)
# Optional exploratory visuals
st.markdown("---")
st.markdown("#### πŸ”Ž Optional Exploratory Visuals")
col1, col2, col3 = st.columns(3)
with col1:
if st.checkbox("Histogram"):
num_cols = df.select_dtypes(include="number").columns.tolist()
col = st.selectbox("Choose numeric column for histogram", num_cols, key="hist")
fig = px.histogram(df, x=col, nbins=30, title=f"Histogram of {col}")
st.plotly_chart(fig, use_container_width=True)
with col2:
if st.checkbox("Scatter matrix"):
num_cols = df.select_dtypes(include="number").columns.tolist()[:6] # limit to first 6
fig = px.scatter_matrix(df[num_cols], dimensions=num_cols, title="Scatter Matrix")
st.plotly_chart(fig, use_container_width=True)
with col3:
if st.checkbox("Correlation heatmap"):
corr = df.select_dtypes(include="number").corr()
fig, ax = plt.subplots(figsize=(6, 5))
im = ax.imshow(corr, vmin=-1, vmax=1, cmap="RdBu")
plt.xticks(range(len(corr)), corr.columns, rotation=45, ha="right")
plt.yticks(range(len(corr)), corr.columns)
plt.colorbar(im, ax=ax)
st.pyplot(fig)
# ── Trend & Forecast ──────────────────────────────────────────────────────
st.markdown("---")
st.markdown("### πŸ“ˆ Trend & Forecast")
# pick date/time column
dt_cols = df.columns[df.dtypes.isin([np.dtype("datetime64[ns]"), np.dtype("object")])].tolist()
date_col = st.selectbox("Select date/time column", dt_cols)
df[date_col] = pd.to_datetime(df[date_col], errors="coerce")
# pick numeric metric
num_cols = df.select_dtypes(include="number").columns.tolist()
metric_col = st.selectbox("Select numeric metric", num_cols)
# prepare time series
ts = df[[date_col, metric_col]].dropna()
ts = ts.set_index(date_col).sort_index()
ts = ts[~ts.index.duplicated(keep="first")]
# Trend plot
fig_trend = px.line(ts, y=metric_col, title=f"{metric_col} over Time")
st.plotly_chart(fig_trend, use_container_width=True)
# Forecast next 90 days with ARIMA
with st.spinner("Running 90-day forecast…"):
try:
model = ARIMA(ts, order=(1, 1, 1)).fit()
fcast = model.get_forecast(90)
idx = pd.date_range(ts.index.max(), periods=91, freq="D")[1:]
df_f = pd.DataFrame({"forecast": fcast.predicted_mean}, index=idx)
fig_fc = px.line(
pd.concat([ts, df_f], axis=1),
labels={metric_col: metric_col, "forecast": "Forecast"},
title=f"{metric_col} & 90-Day Forecast",
)
st.plotly_chart(fig_fc, use_container_width=True)
except Exception as e:
st.error(f"Forecast failed: {e}")
# ── Strategy Recommendations ─────────────────────────────────────────────
st.markdown("---")
st.markdown("### πŸš€ Strategy Recommendations")
st.markdown(
"""
1. **Data Quality First**
Address any missing or malformed dates before further time-series analysis.
2. **Trend & Seasonality**
Investigate any upward/downward trends and repeating seasonal patterns.
3. **Outlier Management**
Identify extreme highs/lows in your metricβ€”could be bulk orders or data errors.
4. **Segment-Level Analysis**
Drill into key dimensions (e.g. region, product) to tailor growth strategies.
5. **Predict & Act**
Use your 90-day forecasts to guide inventory, staffing, and marketing decisions.
"""
)
# downloadable strategy as markdown
strategy_md = st.session_state.get("strategy_md", "")
if not strategy_md:
strategy_md = st.session_state["strategy_md"] = st.container().markdown("…") # dummy to store
st.download_button(
"πŸ“₯ Download Strategy (.md)",
data="""
# BizIntel AI Ultra – Strategy Recommendations
1. Data Quality First: …
2. Trend & Seasonality: …
3. Outlier Management: …
4. Segment-Level Analysis: …
5. Predict & Act: …
""",
file_name="strategy.md",
mime="text/markdown",
)