BizIntel_AI / tools /plot_generator.py
mgbam's picture
Update tools/plot_generator.py
de6f1e8 verified
raw
history blame
2.5 kB
# tools/plot_generator.py
import os
import tempfile
import pandas as pd
import plotly.graph_objects as go
from typing import Tuple, Union
def plot_metric_tool(
file_path: str,
date_col: str,
value_col: str,
output_dir: str = "/tmp",
title: str = None,
line_width: int = 2,
marker_size: int = 6
) -> Union[Tuple[go.Figure, str], str]:
"""
Load CSV or Excel file, parse a time series metric, and return an interactive Plotly Figure
plus a high-res PNG file path for static embedding.
Returns:
- (fig, img_path) on success
- error string starting with '❌' on failure
"""
# Load data
ext = os.path.splitext(file_path)[1].lower()
try:
df = pd.read_excel(file_path) if ext in ('.xls', '.xlsx') else pd.read_csv(file_path)
except Exception as exc:
return f"❌ Failed to load file: {exc}"
# Validate columns
missing = [c for c in (date_col, value_col) if c not in df.columns]
if missing:
return f"❌ Missing column(s): {', '.join(missing)}"
# Parse and clean
try:
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
except Exception:
return f"❌ Could not parse '{date_col}' as dates."
df[value_col] = pd.to_numeric(df[value_col], errors='coerce')
df = df.dropna(subset=[date_col, value_col])
if df.empty:
return f"❌ No valid data after cleaning '{date_col}'/'{value_col}'"
# Aggregate duplicates and sort
df = (
df[[date_col, value_col]]
.groupby(date_col, as_index=True)
.mean()
.sort_index()
)
# Build figure
fig = go.Figure(
data=[
go.Scatter(
x=df.index,
y=df[value_col],
mode='lines+markers',
line=dict(width=line_width),
marker=dict(size=marker_size),
name=value_col,
)
]
)
fig.update_layout(
title=title or f"{value_col} Trend",
xaxis_title=date_col,
yaxis_title=value_col,
template='plotly_dark',
hovermode='x unified'
)
# Save PNG
os.makedirs(output_dir, exist_ok=True)
tmp = tempfile.NamedTemporaryFile(suffix='.png', prefix='trend_', dir=output_dir, delete=False)
img_path = tmp.name
tmp.close()
try:
fig.write_image(img_path, scale=2)
except Exception as exc:
return f"❌ Failed saving image: {exc}"
return fig, img_path