Spaces:
Sleeping
Sleeping
# tools/plot_generator.py | |
import os | |
import tempfile | |
import pandas as pd | |
import plotly.graph_objects as go | |
from typing import Tuple, Union | |
def plot_metric_tool( | |
file_path: str, | |
date_col: str, | |
value_col: str, | |
output_dir: str = "/tmp", | |
title: str = None, | |
line_width: int = 2, | |
marker_size: int = 6 | |
) -> Union[Tuple[go.Figure, str], str]: | |
""" | |
Load CSV or Excel file, parse a time series metric, and return an interactive Plotly Figure | |
plus a high-res PNG file path for static embedding. | |
Returns: | |
- (fig, img_path) on success | |
- error string starting with 'β' on failure | |
""" | |
# Load data | |
ext = os.path.splitext(file_path)[1].lower() | |
try: | |
df = pd.read_excel(file_path) if ext in ('.xls', '.xlsx') else pd.read_csv(file_path) | |
except Exception as exc: | |
return f"β Failed to load file: {exc}" | |
# Validate columns | |
missing = [c for c in (date_col, value_col) if c not in df.columns] | |
if missing: | |
return f"β Missing column(s): {', '.join(missing)}" | |
# Parse and clean | |
try: | |
df[date_col] = pd.to_datetime(df[date_col], errors='coerce') | |
except Exception: | |
return f"β Could not parse '{date_col}' as dates." | |
df[value_col] = pd.to_numeric(df[value_col], errors='coerce') | |
df = df.dropna(subset=[date_col, value_col]) | |
if df.empty: | |
return f"β No valid data after cleaning '{date_col}'/'{value_col}'" | |
# Aggregate duplicates and sort | |
df = ( | |
df[[date_col, value_col]] | |
.groupby(date_col, as_index=True) | |
.mean() | |
.sort_index() | |
) | |
# Build figure | |
fig = go.Figure( | |
data=[ | |
go.Scatter( | |
x=df.index, | |
y=df[value_col], | |
mode='lines+markers', | |
line=dict(width=line_width), | |
marker=dict(size=marker_size), | |
name=value_col, | |
) | |
] | |
) | |
fig.update_layout( | |
title=title or f"{value_col} Trend", | |
xaxis_title=date_col, | |
yaxis_title=value_col, | |
template='plotly_dark', | |
hovermode='x unified' | |
) | |
# Save PNG | |
os.makedirs(output_dir, exist_ok=True) | |
tmp = tempfile.NamedTemporaryFile(suffix='.png', prefix='trend_', dir=output_dir, delete=False) | |
img_path = tmp.name | |
tmp.close() | |
try: | |
fig.write_image(img_path, scale=2) | |
except Exception as exc: | |
return f"β Failed saving image: {exc}" | |
return fig, img_path | |