Spaces:
Sleeping
Sleeping
import pandas as pd | |
import plotly.graph_objects as go | |
from statsmodels.tsa.arima.model import ARIMA | |
def forecast_tool(file_path: str, date_col: str) -> str: | |
""" | |
Forecast next 3 periods of 'Sales'. Returns text summary and saves forecast_plot.png. | |
""" | |
df = pd.read_csv(file_path) | |
try: | |
df[date_col] = pd.to_datetime(df[date_col]) | |
except Exception: | |
return f"β Column '{date_col}' cannot be parsed as dates." | |
if "Sales" not in df.columns: | |
return "β CSV must contain a 'Sales' column." | |
df.set_index(date_col, inplace=True) | |
model = ARIMA(df["Sales"], order=(1, 1, 1)) | |
model_fit = model.fit() | |
forecast = model_fit.forecast(steps=3) | |
# Interactive Plotly forecast with confidence interval | |
conf_int = model_fit.get_forecast(steps=3).conf_int() | |
future_index = forecast.index | |
fig = go.Figure() | |
fig.add_scatter(x=df.index, y=df["Sales"], mode="lines", name="Sales") | |
fig.add_scatter(x=future_index, y=forecast, mode="lines", name="Forecast") | |
fig.add_scatter( | |
x=future_index, | |
y=conf_int.iloc[:, 0], | |
mode="lines", | |
fill=None, | |
line=dict(width=0), | |
showlegend=False, | |
) | |
fig.add_scatter( | |
x=future_index, | |
y=conf_int.iloc[:, 1], | |
mode="lines", | |
fill="tonexty", | |
name="95% CI", | |
line=dict(width=0), | |
) | |
fig.update_layout(title="Sales Forecast", template="plotly_dark") | |
fig.write_image("forecast_plot.png") | |
return forecast.to_frame(name="Forecast").to_string() | |