Spaces:
Sleeping
Sleeping
# app.py โ BizIntelย AIย Ultra (CSV, Excel, DB; Plotly, Geminiโฏ1.5โฏPro) | |
import os | |
import tempfile | |
from io import StringIO | |
from typing import Literal | |
import pandas as pd | |
import streamlit as st | |
import google.generativeai as genai | |
import plotly.graph_objects as go | |
from tools.csv_parser import parse_csv_tool | |
from tools.plot_generator import plot_sales_tool | |
from tools.forecaster import forecast_tool | |
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool | |
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 1. GEMINI 1.5โPRO | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
genai.configure(api_key=os.getenv("GEMINI_APIKEY")) | |
gemini = genai.GenerativeModel( | |
"gemini-1.5-pro-latest", | |
generation_config={"temperature": 0.7, "top_p": 0.9, "response_mime_type": "text/plain"}, | |
) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 2. PAGE SETUP | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
st.set_page_config(page_title="BizIntelย AIย Ultra", layout="wide") | |
st.title("๐ BizIntelย AIย Ultraย โ Advanced Analytics + Geminiย 1.5ย Pro") | |
TEMP_DIR = tempfile.gettempdir() | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 3. DATA SOURCE (CSV, Excel, or DB) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"]) | |
csv_path: str | None = None | |
file_type: Literal["csv", "excel"] | None = None | |
if source == "Upload CSV / Excel": | |
up = st.file_uploader("Upload CSV or Excel (โคโฏ500โฏMB)", type=["csv", "xlsx", "xls"]) | |
if up: | |
suffix = up.name.split(".")[-1].lower() | |
temp_path = os.path.join(TEMP_DIR, up.name) | |
with open(temp_path, "wb") as f: | |
f.write(up.read()) | |
if suffix == "csv": | |
csv_path = temp_path | |
file_type = "csv" | |
else: # Excel โ convert sheet0 to CSV | |
file_type = "excel" | |
try: | |
df_excel = pd.read_excel(temp_path, sheet_name=0) # loads first sheet | |
csv_path = os.path.splitext(temp_path)[0] + ".csv" | |
df_excel.to_csv(csv_path, index=False) | |
except Exception as e: | |
st.error(f"Excel parsing failed: {e}") | |
st.stop() | |
st.success(f"{up.name} saved โ ") | |
else: # SQL DB | |
engine = st.selectbox("DB engine", SUPPORTED_ENGINES) | |
conn = st.text_input("SQLAlchemy connection string") | |
if conn: | |
try: | |
tbls = list_tables(conn) | |
tbl = st.selectbox("Table", tbls) | |
if st.button("Fetch table"): | |
csv_path = fetch_data_from_db(conn, tbl) | |
file_type = "csv" | |
st.success(f"Fetched **{tbl}** as CSV โ ") | |
except Exception as e: | |
st.error(f"Connection failed: {e}") | |
st.stop() | |
if csv_path is None: | |
st.stop() | |
# Download working CSV | |
with open(csv_path, "rb") as f: | |
st.download_button("โฌ๏ธย Download working CSV", f, file_name=os.path.basename(csv_path)) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 4. PREVIEW & DATE COL | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
df_preview = pd.read_csv(csv_path, nrows=5) | |
st.dataframe(df_preview) | |
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 5. LOCAL TOOLS | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
with st.spinner("Parsing datasetโฆ"): | |
summary_text = parse_csv_tool(csv_path) | |
with st.spinner("๐ Generating sales trendโฆ"): | |
sales_fig = plot_sales_tool(csv_path, date_col=date_col) | |
if isinstance(sales_fig, go.Figure): | |
st.plotly_chart(sales_fig, use_container_width=True) | |
else: | |
st.warning(sales_fig) | |
with st.spinner("๐ฎ Forecastingโฆ"): | |
forecast_text = forecast_tool(csv_path, date_col=date_col) | |
forecast_png = "forecast_plot.png" if os.path.exists("forecast_plot.png") else None | |
if forecast_png: | |
st.image(forecast_png, caption="Sales Forecast", use_column_width=True) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 6. GEMINI STRATEGY | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
prompt = ( | |
f"You are **BizIntel Strategist AI**.\n\n" | |
f"### CSV Summary\n```\n{summary_text}\n```\n\n" | |
f"### Forecast Output\n```\n{forecast_text}\n```\n\n" | |
"Return **Markdown** with:\n" | |
"1. Five key insights\n" | |
"2. Three actionable strategies\n" | |
"3. Risk factors or anomalies\n" | |
"4. Suggested additional visuals\n" | |
) | |
st.subheader("๐ Strategy Recommendations (Geminiย 1.5ย Pro)") | |
with st.spinner("Generating insightsโฆ"): | |
strategy_md = gemini.generate_content(prompt).text | |
st.markdown(strategy_md) | |
st.download_button("โฌ๏ธย Download Strategy (.md)", strategy_md, file_name="strategy.md") | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 7. KPI CARDS + EXPANDER | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
full_df = pd.read_csv(csv_path, low_memory=False) | |
total_rows = len(full_df) | |
num_cols = len(full_df.columns) | |
missing_pct = full_df.isna().mean().mean() * 100 | |
st.markdown("---") | |
st.subheader("๐ Dataset Overview") | |
c1, c2, c3 = st.columns(3) | |
c1.metric("Rows", f"{total_rows:,}") | |
c2.metric("Columns", str(num_cols)) | |
c3.metric("Missingย %", f"{missing_pct:.1f}%") | |
with st.expander("๐ย Detailed descriptive statistics"): | |
stats_df = full_df.describe().T.reset_index().rename(columns={"index": "Feature"}) | |
st.dataframe( | |
stats_df.style.format(precision=2).background_gradient(cmap="Blues"), | |
use_container_width=True, | |
) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 8. OPTIONAL EXPLORATORY VISUALS | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
st.markdown("---") | |
st.subheader("๐ Optional Exploratory Visuals") | |
num_cols = df_preview.select_dtypes("number").columns | |
if st.checkbox("Histogram"): | |
hcol = st.selectbox("Variable", num_cols, key="hist") | |
st.plotly_chart(histogram_tool(csv_path, hcol), use_container_width=True) | |
if st.checkbox("Scatterโmatrix"): | |
sel = st.multiselect("Choose columns", num_cols, default=num_cols[:3]) | |
if sel: | |
st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True) | |
if st.checkbox("Correlation heatโmap"): | |
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True) | |