Spaces:
Sleeping
Sleeping
Update tools/plot_generator.py
Browse files- tools/plot_generator.py +47 -38
tools/plot_generator.py
CHANGED
@@ -1,9 +1,17 @@
|
|
1 |
# tools/plot_generator.py
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import tempfile
|
|
|
|
|
4 |
import pandas as pd
|
5 |
import plotly.graph_objects as go
|
6 |
-
|
|
|
|
|
7 |
|
8 |
|
9 |
def plot_metric_tool(
|
@@ -11,41 +19,42 @@ def plot_metric_tool(
|
|
11 |
date_col: str,
|
12 |
value_col: str,
|
13 |
output_dir: str = "/tmp",
|
14 |
-
title: str = None,
|
15 |
line_width: int = 2,
|
16 |
-
marker_size: int = 6
|
17 |
-
) -> Union[Tuple[
|
18 |
"""
|
19 |
-
|
20 |
-
plus a high-res PNG file path for static embedding.
|
21 |
|
22 |
-
Returns
|
23 |
-
|
24 |
-
|
|
|
25 |
"""
|
26 |
-
# Load
|
27 |
ext = os.path.splitext(file_path)[1].lower()
|
28 |
try:
|
29 |
-
df =
|
|
|
|
|
|
|
|
|
30 |
except Exception as exc:
|
31 |
return f"β Failed to load file: {exc}"
|
32 |
|
33 |
-
# Validate columns
|
34 |
missing = [c for c in (date_col, value_col) if c not in df.columns]
|
35 |
if missing:
|
36 |
return f"β Missing column(s): {', '.join(missing)}"
|
37 |
|
38 |
-
# Parse
|
39 |
-
|
40 |
-
|
41 |
-
except Exception:
|
42 |
-
return f"β Could not parse '{date_col}' as dates."
|
43 |
-
df[value_col] = pd.to_numeric(df[value_col], errors='coerce')
|
44 |
df = df.dropna(subset=[date_col, value_col])
|
45 |
if df.empty:
|
46 |
-
return f"β No valid data after cleaning '{date_col}'/'{value_col}'"
|
47 |
|
48 |
-
# Aggregate
|
49 |
df = (
|
50 |
df[[date_col, value_col]]
|
51 |
.groupby(date_col, as_index=True)
|
@@ -53,35 +62,35 @@ def plot_metric_tool(
|
|
53 |
.sort_index()
|
54 |
)
|
55 |
|
56 |
-
# Build figure
|
57 |
fig = go.Figure(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
67 |
-
]
|
68 |
)
|
69 |
fig.update_layout(
|
70 |
title=title or f"{value_col} Trend",
|
71 |
xaxis_title=date_col,
|
72 |
yaxis_title=value_col,
|
73 |
-
template=
|
74 |
-
hovermode=
|
75 |
)
|
76 |
|
77 |
-
# Save PNG
|
78 |
os.makedirs(output_dir, exist_ok=True)
|
79 |
-
tmp = tempfile.NamedTemporaryFile(
|
80 |
-
|
|
|
|
|
81 |
tmp.close()
|
82 |
try:
|
83 |
-
fig.write_image(
|
84 |
except Exception as exc:
|
85 |
return f"β Failed saving image: {exc}"
|
86 |
|
87 |
-
return fig,
|
|
|
1 |
# tools/plot_generator.py
|
2 |
+
# ------------------------------------------------------------
|
3 |
+
# Creates an interactive lineβandβmarker trend chart for any
|
4 |
+
# (date_col, value_col) pair and saves a hiβres PNG copy.
|
5 |
+
|
6 |
import os
|
7 |
import tempfile
|
8 |
+
from typing import Tuple, Union
|
9 |
+
|
10 |
import pandas as pd
|
11 |
import plotly.graph_objects as go
|
12 |
+
|
13 |
+
# Alias for typing β every helper returns a go.Figure
|
14 |
+
Plot = go.Figure
|
15 |
|
16 |
|
17 |
def plot_metric_tool(
|
|
|
19 |
date_col: str,
|
20 |
value_col: str,
|
21 |
output_dir: str = "/tmp",
|
22 |
+
title: str | None = None,
|
23 |
line_width: int = 2,
|
24 |
+
marker_size: int = 6,
|
25 |
+
) -> Union[Tuple[Plot, str], str]:
|
26 |
"""
|
27 |
+
Build a (date, metric) trend chart.
|
|
|
28 |
|
29 |
+
Returns
|
30 |
+
-------
|
31 |
+
(fig, png_path) on success
|
32 |
+
error string on failure (string starts with 'β')
|
33 |
"""
|
34 |
+
# ββ 1. Load CSV or Excel ββββββββββββββββββββββββββββββββββ
|
35 |
ext = os.path.splitext(file_path)[1].lower()
|
36 |
try:
|
37 |
+
df = (
|
38 |
+
pd.read_excel(file_path)
|
39 |
+
if ext in (".xls", ".xlsx")
|
40 |
+
else pd.read_csv(file_path)
|
41 |
+
)
|
42 |
except Exception as exc:
|
43 |
return f"β Failed to load file: {exc}"
|
44 |
|
45 |
+
# ββ 2. Validate columns βββββββββββββββββββββββββββββββββββ
|
46 |
missing = [c for c in (date_col, value_col) if c not in df.columns]
|
47 |
if missing:
|
48 |
return f"β Missing column(s): {', '.join(missing)}"
|
49 |
|
50 |
+
# ββ 3. Parse & clean ββββββββββββββββββββββββββββββββββββββ
|
51 |
+
df[date_col] = pd.to_datetime(df[date_col], errors="coerce")
|
52 |
+
df[value_col] = pd.to_numeric(df[value_col], errors="coerce")
|
|
|
|
|
|
|
53 |
df = df.dropna(subset=[date_col, value_col])
|
54 |
if df.empty:
|
55 |
+
return f"β No valid data after cleaning '{date_col}' / '{value_col}'."
|
56 |
|
57 |
+
# Aggregate duplicate timestamps, sort by date
|
58 |
df = (
|
59 |
df[[date_col, value_col]]
|
60 |
.groupby(date_col, as_index=True)
|
|
|
62 |
.sort_index()
|
63 |
)
|
64 |
|
65 |
+
# ββ 4. Build Plotly figure ββββββββββββββββββββββββββββββββ
|
66 |
fig = go.Figure(
|
67 |
+
go.Scatter(
|
68 |
+
x=df.index,
|
69 |
+
y=df[value_col],
|
70 |
+
mode="lines+markers",
|
71 |
+
line=dict(width=line_width),
|
72 |
+
marker=dict(size=marker_size),
|
73 |
+
name=value_col,
|
74 |
+
)
|
|
|
|
|
75 |
)
|
76 |
fig.update_layout(
|
77 |
title=title or f"{value_col} Trend",
|
78 |
xaxis_title=date_col,
|
79 |
yaxis_title=value_col,
|
80 |
+
template="plotly_dark",
|
81 |
+
hovermode="x unified",
|
82 |
)
|
83 |
|
84 |
+
# ββ 5. Save static PNG copy βββββββββββββββββββββββββββββββ
|
85 |
os.makedirs(output_dir, exist_ok=True)
|
86 |
+
tmp = tempfile.NamedTemporaryFile(
|
87 |
+
prefix="trend_", suffix=".png", dir=output_dir, delete=False
|
88 |
+
)
|
89 |
+
png_path = tmp.name
|
90 |
tmp.close()
|
91 |
try:
|
92 |
+
fig.write_image(png_path, scale=2)
|
93 |
except Exception as exc:
|
94 |
return f"β Failed saving image: {exc}"
|
95 |
|
96 |
+
return fig, png_path
|