|
|
|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
import base64 |
|
import mimetypes |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
import time |
|
import random |
|
import logging |
|
|
|
|
|
from moviepy.editor import ( |
|
ImageClip, |
|
VideoFileClip, |
|
concatenate_videoclips, |
|
TextClip, |
|
CompositeVideoClip, |
|
AudioFileClip, |
|
) |
|
import moviepy.video.fx.all as vfx |
|
|
|
|
|
try: |
|
if hasattr(Image, "Resampling") and hasattr(Image.Resampling, "LANCZOS"): |
|
if not hasattr(Image, "ANTIALIAS"): |
|
Image.ANTIALIAS = Image.Resampling.LANCZOS |
|
elif hasattr(Image, "LANCZOS"): |
|
if not hasattr(Image, "ANTIALIAS"): |
|
Image.ANTIALIAS = Image.LANCZOS |
|
elif not hasattr(Image, "ANTIALIAS"): |
|
print( |
|
"WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different." |
|
) |
|
except Exception as e_monkey_patch: |
|
print( |
|
f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}" |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
ELEVENLABS_CLIENT_IMPORTED = False |
|
ElevenLabsAPIClient = None |
|
Voice = None |
|
VoiceSettings = None |
|
try: |
|
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient |
|
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings |
|
|
|
ElevenLabsAPIClient = ImportedElevenLabsClient |
|
Voice = ImportedVoice |
|
VoiceSettings = ImportedVoiceSettings |
|
ELEVENLABS_CLIENT_IMPORTED = True |
|
logger.info("ElevenLabs client components imported successfully.") |
|
except ImportError: |
|
logger.warning( |
|
"ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled." |
|
) |
|
except Exception as e_eleven_import: |
|
logger.warning( |
|
f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled." |
|
) |
|
|
|
RUNWAYML_SDK_IMPORTED = False |
|
RunwayMLAPIClient = None |
|
try: |
|
from runwayml import RunwayML as ImportedRunwayMLClient |
|
|
|
RunwayMLAPIClient = ImportedRunwayMLClient |
|
RUNWAYML_SDK_IMPORTED = True |
|
logger.info("RunwayML SDK imported successfully.") |
|
except ImportError: |
|
logger.warning( |
|
"RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled." |
|
) |
|
except Exception as e_runway_sdk_import: |
|
logger.warning( |
|
f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled." |
|
) |
|
|
|
|
|
class VisualEngine: |
|
DEFAULT_FONT_SIZE_PIL = 10 |
|
PREFERRED_FONT_SIZE_PIL = 20 |
|
VIDEO_OVERLAY_FONT_SIZE = 30 |
|
VIDEO_OVERLAY_FONT_COLOR = "white" |
|
|
|
DEFAULT_MOVIEPY_FONT = "DejaVu-Sans-Bold" |
|
PREFERRED_MOVIEPY_FONT = "Liberation-Sans-Bold" |
|
|
|
def __init__( |
|
self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel" |
|
): |
|
self.output_dir = output_dir |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
|
|
self.font_filename_pil = "DejaVuSans-Bold.ttf" |
|
font_paths_to_try = [ |
|
self.font_filename_pil, |
|
f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}", |
|
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", |
|
f"/System/Library/Fonts/Supplemental/Arial.ttf", |
|
f"C:/Windows/Fonts/arial.ttf", |
|
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf", |
|
] |
|
self.font_path_pil_resolved = next( |
|
(p for p in font_paths_to_try if os.path.exists(p)), None |
|
) |
|
|
|
self.font_pil = ImageFont.load_default() |
|
self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL |
|
|
|
if self.font_path_pil_resolved: |
|
try: |
|
self.font_pil = ImageFont.truetype( |
|
self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL |
|
) |
|
self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL |
|
logger.info( |
|
f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}." |
|
) |
|
|
|
if "dejavu" in self.font_path_pil_resolved.lower(): |
|
self.video_overlay_font = "DejaVu-Sans-Bold" |
|
elif "liberation" in self.font_path_pil_resolved.lower(): |
|
self.video_overlay_font = "Liberation-Sans-Bold" |
|
else: |
|
self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT |
|
except IOError as e_font_load: |
|
logger.error( |
|
f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default." |
|
) |
|
else: |
|
logger.warning("Custom Pillow font not found. Using default.") |
|
|
|
self.openai_api_key = None |
|
self.USE_AI_IMAGE_GENERATION = False |
|
self.dalle_model = "dall-e-3" |
|
self.image_size_dalle3 = "1792x1024" |
|
self.video_frame_size = (1280, 720) |
|
|
|
self.elevenlabs_api_key = None |
|
self.USE_ELEVENLABS = False |
|
self.elevenlabs_client = None |
|
self.elevenlabs_voice_id = default_elevenlabs_voice_id |
|
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: |
|
self.elevenlabs_voice_settings = VoiceSettings( |
|
stability=0.60, |
|
similarity_boost=0.80, |
|
style=0.15, |
|
use_speaker_boost=True, |
|
) |
|
else: |
|
self.elevenlabs_voice_settings = None |
|
|
|
self.pexels_api_key = None |
|
self.USE_PEXELS = False |
|
self.runway_api_key = None |
|
self.USE_RUNWAYML = False |
|
self.runway_ml_client_instance = None |
|
|
|
|
|
if ( |
|
RUNWAYML_SDK_IMPORTED |
|
and RunwayMLAPIClient |
|
and os.getenv("RUNWAYML_API_SECRET") |
|
): |
|
try: |
|
self.runway_ml_client_instance = RunwayMLAPIClient() |
|
self.USE_RUNWAYML = True |
|
logger.info( |
|
"RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup." |
|
) |
|
except Exception as e_runway_init_startup: |
|
logger.error( |
|
f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}" |
|
) |
|
self.USE_RUNWAYML = False |
|
|
|
logger.info("VisualEngine initialized.") |
|
|
|
|
|
def set_openai_api_key(self, api_key): |
|
self.openai_api_key = api_key |
|
self.USE_AI_IMAGE_GENERATION = bool(api_key) |
|
logger.info( |
|
f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}" |
|
) |
|
|
|
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None): |
|
self.elevenlabs_api_key = api_key |
|
if voice_id_from_secret: |
|
self.elevenlabs_voice_id = voice_id_from_secret |
|
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: |
|
try: |
|
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key) |
|
self.USE_ELEVENLABS = bool(self.elevenlabs_client) |
|
logger.info( |
|
f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})" |
|
) |
|
except Exception as e: |
|
logger.error( |
|
f"ElevenLabs client initialization error: {e}. Service Disabled.", |
|
exc_info=True, |
|
) |
|
self.USE_ELEVENLABS = False |
|
self.elevenlabs_client = None |
|
else: |
|
self.USE_ELEVENLABS = False |
|
logger.info( |
|
f"ElevenLabs Service Disabled (API key not provided or SDK import issue)." |
|
) |
|
|
|
def set_pexels_api_key(self, api_key): |
|
self.pexels_api_key = api_key |
|
self.USE_PEXELS = bool(api_key) |
|
logger.info( |
|
f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}" |
|
) |
|
|
|
def set_runway_api_key(self, api_key): |
|
self.runway_api_key = api_key |
|
if api_key: |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient: |
|
if not self.runway_ml_client_instance: |
|
try: |
|
|
|
|
|
original_env_secret = os.getenv("RUNWAYML_API_SECRET") |
|
if not original_env_secret: |
|
logger.info( |
|
"Temporarily setting RUNWAYML_API_SECRET from provided key for SDK client init." |
|
) |
|
os.environ["RUNWAYML_API_SECRET"] = api_key |
|
|
|
self.runway_ml_client_instance = RunwayMLAPIClient() |
|
self.USE_RUNWAYML = True |
|
logger.info( |
|
"RunwayML Client initialized successfully using provided API key." |
|
) |
|
|
|
if not original_env_secret: |
|
del os.environ["RUNWAYML_API_SECRET"] |
|
logger.info( |
|
"Cleared temporary RUNWAYML_API_SECRET env var." |
|
) |
|
|
|
except Exception as e_client_init: |
|
logger.error( |
|
f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}", |
|
exc_info=True, |
|
) |
|
self.USE_RUNWAYML = False |
|
self.runway_ml_client_instance = None |
|
else: |
|
self.USE_RUNWAYML = True |
|
logger.info( |
|
"RunwayML Client was already initialized (likely from env var). API key stored." |
|
) |
|
else: |
|
logger.warning( |
|
"RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled." |
|
) |
|
self.USE_RUNWAYML = False |
|
else: |
|
self.USE_RUNWAYML = False |
|
self.runway_ml_client_instance = None |
|
logger.info("RunwayML Service Disabled (no API key provided).") |
|
|
|
|
|
def _image_to_data_uri(self, image_path): |
|
try: |
|
mime_type, _ = mimetypes.guess_type(image_path) |
|
if not mime_type: |
|
ext = os.path.splitext(image_path)[1].lower() |
|
mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg"} |
|
mime_type = mime_map.get(ext, "application/octet-stream") |
|
if mime_type == "application/octet-stream": |
|
logger.warning( |
|
f"Could not determine MIME type for {image_path}, using default." |
|
) |
|
|
|
with open(image_path, "rb") as image_file: |
|
encoded_string = base64.b64encode(image_file.read()).decode("utf-8") |
|
data_uri = f"data:{mime_type};base64,{encoded_string}" |
|
logger.debug( |
|
f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}..." |
|
) |
|
return data_uri |
|
except FileNotFoundError: |
|
logger.error(f"Image file not found at {image_path} for data URI conversion.") |
|
return None |
|
except Exception as e: |
|
logger.error( |
|
f"Error converting image {image_path} to data URI: {e}", exc_info=True |
|
) |
|
return None |
|
|
|
def _map_resolution_to_runway_ratio(self, width, height): |
|
ratio_str = f"{width}:{height}" |
|
|
|
supported_ratios_gen4 = [ |
|
"1280:720", |
|
"720:1280", |
|
"1104:832", |
|
"832:1104", |
|
"960:960", |
|
"1584:672", |
|
] |
|
if ratio_str in supported_ratios_gen4: |
|
return ratio_str |
|
|
|
logger.warning( |
|
f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720." |
|
) |
|
return "1280:720" |
|
|
|
def _get_text_dimensions(self, text_content, font_object): |
|
|
|
default_char_height = getattr(font_object, "size", self.current_font_size_pil) |
|
if not text_content: |
|
return 0, default_char_height |
|
try: |
|
if hasattr(font_object, "getbbox"): |
|
bbox = font_object.getbbox(text_content) |
|
w = bbox[2] - bbox[0] |
|
h = bbox[3] - bbox[1] |
|
return w, h if h > 0 else default_char_height |
|
elif hasattr(font_object, "getsize"): |
|
w, h = font_object.getsize(text_content) |
|
return w, h if h > 0 else default_char_height |
|
else: |
|
return ( |
|
int(len(text_content) * default_char_height * 0.6), |
|
int(default_char_height * 1.2), |
|
) |
|
except Exception as e: |
|
logger.warning(f"Error in _get_text_dimensions: {e}") |
|
return ( |
|
int(len(text_content) * self.current_font_size_pil * 0.6), |
|
int(self.current_font_size_pil * 1.2), |
|
) |
|
|
|
def _create_placeholder_image_content(self, text_description, filename, size=None): |
|
|
|
if size is None: |
|
size = self.video_frame_size |
|
img = Image.new("RGB", size, color=(20, 20, 40)) |
|
d = ImageDraw.Draw(img) |
|
padding = 25 |
|
max_w = size[0] - (2 * padding) |
|
lines = [] |
|
if not text_description: |
|
text_description = "(Placeholder Image)" |
|
words = text_description.split() |
|
current_line_text = "" |
|
for word_idx, word in enumerate(words): |
|
prospective_addition = word + (" " if word_idx < len(words) - 1 else "") |
|
test_line_text = current_line_text + prospective_addition |
|
current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil) |
|
if current_w == 0 and test_line_text.strip(): |
|
current_w = len(test_line_text) * (self.current_font_size_pil * 0.6) |
|
|
|
if current_w <= max_w: |
|
current_line_text = test_line_text |
|
else: |
|
if current_line_text.strip(): |
|
lines.append(current_line_text.strip()) |
|
current_line_text = prospective_addition |
|
if current_line_text.strip(): |
|
lines.append(current_line_text.strip()) |
|
|
|
if not lines and text_description: |
|
avg_char_w, _ = self._get_text_dimensions("W", self.font_pil) |
|
avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6) |
|
chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20 |
|
lines.append( |
|
text_description[:chars_per_line] |
|
+ ("..." if len(text_description) > chars_per_line else "") |
|
) |
|
elif not lines: |
|
lines.append("(Placeholder Error)") |
|
|
|
_, single_line_h = self._get_text_dimensions("Ay", self.font_pil) |
|
single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2 |
|
max_lines = ( |
|
min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) |
|
if single_line_h > 0 |
|
else 1 |
|
) |
|
max_lines = max(1, max_lines) |
|
|
|
y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0 |
|
for i in range(max_lines): |
|
line_text = lines[i] |
|
line_w, _ = self._get_text_dimensions(line_text, self.font_pil) |
|
if line_w == 0 and line_text.strip(): |
|
line_w = len(line_text) * (self.current_font_size_pil * 0.6) |
|
x_pos = (size[0] - line_w) / 2.0 |
|
try: |
|
d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180)) |
|
except Exception as e_draw: |
|
logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'") |
|
y_pos += single_line_h + 2 |
|
if i == 6 and max_lines > 7: |
|
try: |
|
d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180)) |
|
except Exception as e_elip: |
|
logger.error(f"Pillow d.text ellipsis error: {e_elip}") |
|
break |
|
|
|
filepath = os.path.join(self.output_dir, filename) |
|
try: |
|
img.save(filepath) |
|
return filepath |
|
except Exception as e_save: |
|
logger.error( |
|
f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True |
|
) |
|
return None |
|
|
|
def _search_pexels_image(self, query, output_filename_base): |
|
|
|
if not self.USE_PEXELS or not self.pexels_api_key: |
|
return None |
|
headers = {"Authorization": self.pexels_api_key} |
|
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"} |
|
base_name_for_pexels, _ = os.path.splitext(output_filename_base) |
|
pexels_filename = base_name_for_pexels + f"_pexels_{random.randint(1000,9999)}.jpg" |
|
filepath = os.path.join(self.output_dir, pexels_filename) |
|
try: |
|
logger.info(f"Pexels: Searching for '{query}'") |
|
effective_query = " ".join(query.split()[:5]) |
|
params["query"] = effective_query |
|
response = requests.get( |
|
"https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20 |
|
) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data.get("photos") and len(data["photos"]) > 0: |
|
photo_details = data["photos"][0] |
|
photo_url = photo_details.get("src", {}).get("large2x") |
|
if not photo_url: |
|
logger.warning( |
|
f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}" |
|
) |
|
return None |
|
image_response = requests.get(photo_url, timeout=60) |
|
image_response.raise_for_status() |
|
img_data_pil = Image.open(io.BytesIO(image_response.content)) |
|
if img_data_pil.mode != "RGB": |
|
img_data_pil = img_data_pil.convert("RGB") |
|
img_data_pil.save(filepath) |
|
logger.info(f"Pexels: Image saved to {filepath}") |
|
return filepath |
|
else: |
|
logger.info(f"Pexels: No photos for '{effective_query}'.") |
|
return None |
|
except requests.exceptions.RequestException as e_req: |
|
logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False) |
|
return None |
|
except Exception as e: |
|
logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True) |
|
return None |
|
|
|
|
|
def _generate_video_clip_with_runwayml( |
|
self, |
|
text_prompt_for_motion, |
|
input_image_path, |
|
scene_identifier_filename_base, |
|
target_duration_seconds=5, |
|
): |
|
if not self.USE_RUNWAYML or not self.runway_ml_client_instance: |
|
logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.") |
|
return None |
|
if not input_image_path or not os.path.exists(input_image_path): |
|
logger.error( |
|
f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}" |
|
) |
|
return None |
|
|
|
image_data_uri = self._image_to_data_uri(input_image_path) |
|
if not image_data_uri: |
|
return None |
|
|
|
runway_duration = 10 if target_duration_seconds >= 8 else 5 |
|
runway_ratio_str = self._map_resolution_to_runway_ratio( |
|
self.video_frame_size[0], self.video_frame_size[1] |
|
) |
|
|
|
|
|
base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base) |
|
output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4" |
|
output_video_filepath = os.path.join(self.output_dir, output_video_filename) |
|
|
|
logger.info( |
|
f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'" |
|
) |
|
try: |
|
|
|
task_submission = self.runway_ml_client_instance.image_to_video.create( |
|
model="gen4_turbo", |
|
prompt_image=image_data_uri, |
|
prompt_text=text_prompt_for_motion, |
|
duration=runway_duration, |
|
ratio=runway_ratio_str, |
|
|
|
|
|
) |
|
task_id = task_submission.id |
|
logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...") |
|
|
|
poll_interval_seconds = 10 |
|
max_polling_duration_seconds = 6 * 60 |
|
start_time = time.time() |
|
|
|
while time.time() - start_time < max_polling_duration_seconds: |
|
time.sleep(poll_interval_seconds) |
|
task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id) |
|
logger.info(f"Runway task {task_id} status: {task_details.status}") |
|
|
|
if task_details.status == "SUCCEEDED": |
|
|
|
output_url = None |
|
if hasattr(task_details, "output") and task_details.output and hasattr( |
|
task_details.output, "url" |
|
): |
|
output_url = task_details.output.url |
|
elif ( |
|
hasattr(task_details, "artifacts") |
|
and task_details.artifacts |
|
and isinstance(task_details.artifacts, list) |
|
and len(task_details.artifacts) > 0 |
|
): |
|
first_artifact = task_details.artifacts[0] |
|
if hasattr(first_artifact, "url"): |
|
output_url = first_artifact.url |
|
elif hasattr(first_artifact, "download_url"): |
|
output_url = first_artifact.download_url |
|
|
|
if not output_url: |
|
logger.error( |
|
f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}" |
|
) |
|
return None |
|
|
|
logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}") |
|
video_response = requests.get(output_url, stream=True, timeout=300) |
|
video_response.raise_for_status() |
|
with open(output_video_filepath, "wb") as f: |
|
for chunk in video_response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
logger.info( |
|
f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}" |
|
) |
|
return output_video_filepath |
|
|
|
elif task_details.status in ["FAILED", "ABORTED", "ERROR"]: |
|
error_msg = ( |
|
getattr(task_details, "error_message", None) |
|
or getattr(getattr(task_details, "output", None), "error", "Unknown error from Runway task.") |
|
) |
|
logger.error( |
|
f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}" |
|
) |
|
return None |
|
|
|
logger.warning( |
|
f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds." |
|
) |
|
return None |
|
|
|
except AttributeError as ae: |
|
logger.error( |
|
f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.", |
|
exc_info=True, |
|
) |
|
return None |
|
except Exception as e_runway_call: |
|
logger.error( |
|
f"General error during Runway Gen-4 API call or processing: {e_runway_call}", |
|
exc_info=True, |
|
) |
|
return None |
|
|
|
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None): |
|
|
|
if size is None: |
|
size = self.video_frame_size |
|
fp = os.path.join(self.output_dir, filename) |
|
tc = None |
|
try: |
|
tc = TextClip( |
|
text_description, |
|
fontsize=50, |
|
color="white", |
|
font=self.video_overlay_font, |
|
bg_color="black", |
|
size=size, |
|
method="caption", |
|
).set_duration(duration) |
|
tc.write_videofile( |
|
fp, fps=24, codec="libx264", preset="ultrafast", logger=None, threads=2 |
|
) |
|
logger.info(f"Generic placeholder video: {fp}") |
|
return fp |
|
except Exception as e: |
|
logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True) |
|
return None |
|
finally: |
|
if tc and hasattr(tc, "close"): |
|
tc.close() |
|
|
|
|
|
def generate_scene_asset( |
|
self, |
|
image_generation_prompt_text, |
|
motion_prompt_text_for_video, |
|
scene_data, |
|
scene_identifier_filename_base, |
|
generate_as_video_clip=False, |
|
runway_target_duration=5, |
|
): |
|
|
|
base_name, _ = os.path.splitext(scene_identifier_filename_base) |
|
asset_info = { |
|
"path": None, |
|
"type": "none", |
|
"error": True, |
|
"prompt_used": image_generation_prompt_text, |
|
"error_message": "Asset generation init failed", |
|
} |
|
input_image_for_runway_path = None |
|
|
|
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png") |
|
base_image_filepath = os.path.join(self.output_dir, base_image_filename) |
|
|
|
|
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
try: |
|
logger.info(f"Calling DALL·E with prompt: {image_generation_prompt_text[:70]}...") |
|
response = openai.Image.create( |
|
prompt=image_generation_prompt_text, |
|
n=1, |
|
size=self.image_size_dalle3, |
|
model=self.dalle_model, |
|
) |
|
image_url = response["data"][0]["url"] |
|
ir = requests.get(image_url, timeout=120) |
|
ir.raise_for_status() |
|
id_img = Image.open(io.BytesIO(ir.content)) |
|
if id_img.mode != "RGB": |
|
id_img = id_img.convert("RGB") |
|
id_img.save(base_image_filepath) |
|
logger.info(f"DALL·E base image saved: {base_image_filepath}") |
|
input_image_for_runway_path = base_image_filepath |
|
asset_info = { |
|
"path": base_image_filepath, |
|
"type": "image", |
|
"error": False, |
|
"prompt_used": image_generation_prompt_text, |
|
} |
|
except openai.error.OpenAIError as e: |
|
logger.warning(f"DALL·E error: {e}. Falling back to Pexels or placeholder.") |
|
asset_info["error_message"] = str(e) |
|
except Exception as e: |
|
logger.error(f"Unexpected DALL·E error: {e}", exc_info=True) |
|
asset_info["error_message"] = str(e) |
|
|
|
|
|
if asset_info["error"] and self.USE_PEXELS: |
|
logger.info("Attempting Pexels fallback for base image.") |
|
pqt = scene_data.get( |
|
"pexels_search_query_감독", f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}" |
|
) |
|
pp = self._search_pexels_image(pqt, base_image_filename) |
|
if pp: |
|
input_image_for_runway_path = pp |
|
asset_info = { |
|
"path": pp, |
|
"type": "image", |
|
"error": False, |
|
"prompt_used": f"Pexels:{pqt}", |
|
} |
|
else: |
|
current_em = asset_info.get("error_message", "") |
|
asset_info["error_message"] = (current_em + " Pexels fallback failed.").strip() |
|
|
|
|
|
if asset_info["error"]: |
|
logger.warning("Both DALL·E and Pexels failed. Creating placeholder image.") |
|
ppt = asset_info.get("prompt_used", image_generation_prompt_text) |
|
php = self._create_placeholder_image_content( |
|
f"[Placeholder for] {ppt[:70]}...", base_image_filename |
|
) |
|
if php: |
|
input_image_for_runway_path = php |
|
asset_info = { |
|
"path": php, |
|
"type": "image", |
|
"error": False, |
|
"prompt_used": ppt, |
|
} |
|
else: |
|
current_em = asset_info.get("error_message", "") |
|
asset_info["error_message"] = (current_em + " Placeholder creation failed.").strip() |
|
|
|
|
|
if generate_as_video_clip: |
|
if not input_image_for_runway_path or not os.path.exists(input_image_for_runway_path): |
|
logger.error("No valid base image for RunwayML. Skipping video generation.") |
|
asset_info["error"] = True |
|
asset_info["error_message"] = (asset_info.get("error_message", "") + " No base image.").strip() |
|
asset_info["type"] = "none" |
|
return asset_info |
|
|
|
if self.USE_RUNWAYML and self.runway_ml_client_instance: |
|
video_path = self._generate_video_clip_with_runwayml( |
|
motion_prompt_text_for_video, |
|
input_image_for_runway_path, |
|
base_name, |
|
runway_target_duration, |
|
) |
|
if video_path and os.path.exists(video_path): |
|
asset_info = { |
|
"path": video_path, |
|
"type": "video", |
|
"error": False, |
|
"prompt_used": motion_prompt_text_for_video, |
|
"base_image_path": input_image_for_runway_path, |
|
} |
|
else: |
|
logger.warning("RunwayML video generation failed. Returning base image instead.") |
|
asset_info = { |
|
"path": input_image_for_runway_path, |
|
"type": "image", |
|
"error": True, |
|
"prompt_used": image_generation_prompt_text, |
|
"error_message": (asset_info.get("error_message", "") + " RunwayML failed.").strip(), |
|
} |
|
else: |
|
logger.warning("RunwayML not enabled or client not initialized. Skipping video generation.") |
|
asset_info = { |
|
"path": input_image_for_runway_path, |
|
"type": "image", |
|
"error": True, |
|
"prompt_used": image_generation_prompt_text, |
|
"error_message": (asset_info.get("error_message", "") + " RunwayML disabled.").strip(), |
|
} |
|
|
|
return asset_info |
|
|
|
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"): |
|
|
|
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: |
|
logger.info("ElevenLabs audio skipped.") |
|
return None |
|
|
|
afp = os.path.join(self.output_dir, output_filename) |
|
try: |
|
logger.info(f"ElevenLabs audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...") |
|
asm = None |
|
|
|
if hasattr(self.elevenlabs_client, "text_to_speech") and hasattr( |
|
self.elevenlabs_client.text_to_speech, "stream" |
|
): |
|
asm = self.elevenlabs_client.text_to_speech.stream |
|
logger.info("Using ElevenLabs .text_to_speech.stream()") |
|
elif hasattr(self.elevenlabs_client, "generate_stream"): |
|
asm = self.elevenlabs_client.generate_stream |
|
logger.info("Using ElevenLabs .generate_stream()") |
|
elif hasattr(self.elevenlabs_client, "generate"): |
|
logger.info("Using ElevenLabs .generate()") |
|
vp = ( |
|
Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) |
|
if Voice and self.elevenlabs_voice_settings |
|
else str(self.elevenlabs_voice_id) |
|
) |
|
ab = self.elevenlabs_client.generate( |
|
text=text_to_narrate, voice=vp, model="eleven_multilingual_v2" |
|
) |
|
with open(afp, "wb") as f: |
|
f.write(ab) |
|
logger.info(f"ElevenLabs audio (non-stream) saved: {afp}") |
|
return afp |
|
else: |
|
logger.error("No ElevenLabs audio method available.") |
|
return None |
|
|
|
|
|
if asm: |
|
vps = {"voice_id": str(self.elevenlabs_voice_id)} |
|
if self.elevenlabs_voice_settings: |
|
if hasattr(self.elevenlabs_voice_settings, "model_dump"): |
|
vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump() |
|
elif hasattr(self.elevenlabs_voice_settings, "dict"): |
|
vps["voice_settings"] = self.elevenlabs_voice_settings.dict() |
|
else: |
|
vps["voice_settings"] = self.elevenlabs_voice_settings |
|
|
|
adi = asm(text=text_to_narrate, model_id="eleven_multilingual_v2", **vps) |
|
with open(afp, "wb") as f: |
|
for c in adi: |
|
if c: |
|
f.write(c) |
|
logger.info(f"ElevenLabs audio (stream) saved: {afp}") |
|
return afp |
|
|
|
except Exception as e: |
|
logger.error(f"ElevenLabs audio error: {e}", exc_info=True) |
|
return None |
|
|
|
|
|
def assemble_animatic_from_assets( |
|
self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24 |
|
): |
|
|
|
if not asset_data_list: |
|
logger.warning("No assets for animatic.") |
|
return None |
|
|
|
processed_clips = [] |
|
narration_clip = None |
|
final_clip = None |
|
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.") |
|
|
|
for i, asset_info in enumerate(asset_data_list): |
|
asset_path = asset_info.get("path") |
|
asset_type = asset_info.get("type") |
|
scene_dur = asset_info.get("duration", 4.5) |
|
scene_num = asset_info.get("scene_num", i + 1) |
|
key_action = asset_info.get("key_action", "") |
|
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s") |
|
|
|
if not (asset_path and os.path.exists(asset_path)): |
|
logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.") |
|
continue |
|
if scene_dur <= 0: |
|
logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.") |
|
continue |
|
|
|
current_scene_mvpy_clip = None |
|
try: |
|
if asset_type == "image": |
|
pil_img = Image.open(asset_path) |
|
logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}") |
|
img_rgba = pil_img.convert("RGBA") if pil_img.mode != "RGBA" else pil_img.copy() |
|
thumb = img_rgba.copy() |
|
rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, "LANCZOS") else Image.BILINEAR |
|
thumb.thumbnail(self.video_frame_size, rf) |
|
cv_rgba = Image.new("RGBA", self.video_frame_size, (0, 0, 0, 0)) |
|
xo, yo = ( |
|
(self.video_frame_size[0] - thumb.width) // 2, |
|
(self.video_frame_size[1] - thumb.height) // 2, |
|
) |
|
cv_rgba.paste(thumb, (xo, yo), thumb) |
|
final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0)) |
|
final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3]) |
|
dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png") |
|
final_rgb_pil.save(dbg_path) |
|
logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}") |
|
frame_np = np.array(final_rgb_pil, dtype=np.uint8) |
|
if not frame_np.flags["C_CONTIGUOUS"]: |
|
frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8) |
|
logger.debug( |
|
f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}" |
|
) |
|
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3: |
|
logger.error(f"S{scene_num}: Invalid NumPy. Skip.") |
|
continue |
|
clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur) |
|
mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png") |
|
clip_base.save_frame(mvpy_dbg_path, t=0.1) |
|
logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}") |
|
clip_fx = clip_base |
|
try: |
|
es = random.uniform(1.03, 1.08) |
|
clip_fx = clip_base.fx( |
|
vfx.resize, lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1 |
|
).set_position("center") |
|
except Exception as e: |
|
logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False) |
|
current_scene_mvpy_clip = clip_fx |
|
|
|
elif asset_type == "video": |
|
src_clip = None |
|
try: |
|
src_clip = VideoFileClip( |
|
asset_path, |
|
target_resolution=( |
|
self.video_frame_size[1], |
|
self.video_frame_size[0], |
|
) |
|
if self.video_frame_size |
|
else None, |
|
audio=False, |
|
) |
|
tmp_clip = src_clip |
|
if src_clip.duration != scene_dur: |
|
if src_clip.duration > scene_dur: |
|
tmp_clip = src_clip.subclip(0, scene_dur) |
|
else: |
|
if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1: |
|
tmp_clip = src_clip.loop(duration=scene_dur) |
|
else: |
|
tmp_clip = src_clip.set_duration(src_clip.duration) |
|
logger.info( |
|
f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s)." |
|
) |
|
current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur) |
|
if current_scene_mvpy_clip.size != list(self.video_frame_size): |
|
current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size) |
|
except Exception as e: |
|
logger.error(f"S{scene_num} Video load error '{asset_path}':{e}", exc_info=True) |
|
continue |
|
finally: |
|
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, "close"): |
|
src_clip.close() |
|
else: |
|
logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.") |
|
continue |
|
|
|
if current_scene_mvpy_clip and key_action: |
|
try: |
|
to_dur = ( |
|
min(current_scene_mvpy_clip.duration - 0.5, current_scene_mvpy_clip.duration * 0.8) |
|
if current_scene_mvpy_clip.duration > 0.5 |
|
else current_scene_mvpy_clip.duration |
|
) |
|
to_start = 0.25 |
|
if to_dur > 0: |
|
txt_c = TextClip( |
|
f"Scene {scene_num}\n{key_action}", |
|
fontsize=self.VIDEO_OVERLAY_FONT_SIZE, |
|
color=self.VIDEO_OVERLAY_FONT_COLOR, |
|
font=self.video_overlay_font, |
|
bg_color="rgba(10,10,20,0.7)", |
|
method="caption", |
|
align="West", |
|
size=(self.video_frame_size[0] * 0.9, None), |
|
kerning=-1, |
|
stroke_color="black", |
|
stroke_width=1.5, |
|
).set_duration(to_dur).set_start(to_start).set_position( |
|
("center", 0.92), relative=True |
|
) |
|
current_scene_mvpy_clip = CompositeVideoClip( |
|
[current_scene_mvpy_clip, txt_c], size=self.video_frame_size, use_bgclip=True |
|
) |
|
else: |
|
logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.") |
|
except Exception as e: |
|
logger.error(f"S{scene_num} TextClip error:{e}. No text.", exc_info=True) |
|
|
|
if current_scene_mvpy_clip: |
|
processed_clips.append(current_scene_mvpy_clip) |
|
logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.") |
|
except Exception as e: |
|
logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}", exc_info=True) |
|
finally: |
|
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, "close"): |
|
try: |
|
current_scene_mvpy_clip.close() |
|
except: |
|
pass |
|
|
|
if not processed_clips: |
|
logger.warning("No clips processed. Abort.") |
|
return None |
|
|
|
td = 0.75 |
|
try: |
|
logger.info(f"Concatenating {len(processed_clips)} clips.") |
|
if len(processed_clips) > 1: |
|
final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose") |
|
elif processed_clips: |
|
final_clip = processed_clips[0] |
|
if not final_clip: |
|
logger.error("Concatenation failed.") |
|
return None |
|
|
|
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s") |
|
if td > 0 and final_clip.duration > 0: |
|
if final_clip.duration > td * 2: |
|
final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td) |
|
else: |
|
final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0)) |
|
|
|
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0: |
|
try: |
|
narration_clip = AudioFileClip(overall_narration_path) |
|
final_clip = final_clip.set_audio(narration_clip) |
|
logger.info("Narration added.") |
|
except Exception as e: |
|
logger.error(f"Narration add error:{e}", exc_info=True) |
|
elif final_clip.duration <= 0: |
|
logger.warning("Video no duration. No audio.") |
|
|
|
if final_clip and final_clip.duration > 0: |
|
op = os.path.join(self.output_dir, output_filename) |
|
logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)") |
|
final_clip.write_videofile( |
|
op, |
|
fps=fps, |
|
codec="libx264", |
|
preset="medium", |
|
audio_codec="aac", |
|
temp_audiofile=os.path.join(self.output_dir, f"temp-audio-{os.urandom(4).hex()}.m4a"), |
|
remove_temp=True, |
|
threads=os.cpu_count() or 2, |
|
logger="bar", |
|
bitrate="5000k", |
|
ffmpeg_params=["-pix_fmt", "yuv420p"], |
|
) |
|
logger.info(f"Video created:{op}") |
|
return op |
|
else: |
|
logger.error("Final clip invalid. No write.") |
|
return None |
|
except Exception as e: |
|
logger.error(f"Video write error:{e}", exc_info=True) |
|
return None |
|
finally: |
|
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.") |
|
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else []) |
|
for clip_obj_to_close in all_clips_to_close: |
|
if clip_obj_to_close and hasattr(clip_obj_to_close, "close"): |
|
try: |
|
clip_obj_to_close.close() |
|
except Exception as e_close: |
|
logger.warning( |
|
f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}" |
|
) |
|
|