|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
import base64 |
|
import json |
|
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip, |
|
CompositeVideoClip, AudioFileClip) |
|
import moviepy.video.fx.all as vfx |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
import time |
|
import random |
|
import logging |
|
import mimetypes |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
try: |
|
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): |
|
Image.ANTIALIAS = Image.Resampling.LANCZOS |
|
elif hasattr(Image, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): |
|
Image.ANTIALIAS = Image.LANCZOS |
|
elif not hasattr(Image, 'ANTIALIAS'): |
|
print("WARNING: Pillow ANTIALIAS/Resampling issue.") |
|
except Exception as e_mp: |
|
print(f"WARNING: ANTIALIAS patch error: {e_mp}") |
|
|
|
|
|
ELEVENLABS_CLIENT_IMPORTED = False |
|
ElevenLabsAPIClient = None |
|
Voice = None |
|
VoiceSettings = None |
|
try: |
|
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient |
|
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings |
|
ElevenLabsAPIClient = ImportedElevenLabsClient |
|
Voice = ImportedVoice |
|
VoiceSettings = ImportedVoiceSettings |
|
ELEVENLABS_CLIENT_IMPORTED = True |
|
logger.info("ElevenLabs client components imported.") |
|
except Exception as e_eleven: |
|
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.") |
|
|
|
RUNWAYML_SDK_IMPORTED = False |
|
RunwayMLAPIClient = None |
|
try: |
|
from runwayml import RunwayML as ImportedRunwayMLClient |
|
RunwayMLAPIClient = ImportedRunwayMLClient |
|
RUNWAYML_SDK_IMPORTED = True |
|
logger.info("RunwayML SDK imported successfully.") |
|
except ImportError: |
|
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.") |
|
except Exception as e_runway_sdk: |
|
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.") |
|
|
|
|
|
class VisualEngine: |
|
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"): |
|
self.output_dir = output_dir |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
self.font_filename = "DejaVuSans-Bold.ttf" |
|
font_paths_to_try = [ |
|
self.font_filename, |
|
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", |
|
"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", |
|
"/System/Library/Fonts/Supplemental/Arial.ttf", |
|
"C:/Windows/Fonts/arial.ttf", |
|
"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf" |
|
] |
|
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None) |
|
self.font_size_pil = 20 |
|
self.video_overlay_font_size = 30 |
|
self.video_overlay_font_color = 'white' |
|
self.video_overlay_font = 'DejaVu-Sans-Bold' |
|
try: |
|
if self.font_path_pil: |
|
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) |
|
logger.info(f"Pillow font: {self.font_path_pil}.") |
|
else: |
|
self.font = ImageFont.load_default() |
|
logger.warning("Default Pillow font.") |
|
self.font_size_pil = 10 |
|
except IOError as e_font: |
|
logger.error(f"Pillow font IOError: {e_font}. Default.") |
|
self.font = ImageFont.load_default() |
|
self.font_size_pil = 10 |
|
|
|
self.openai_api_key = None |
|
self.USE_AI_IMAGE_GENERATION = False |
|
self.dalle_model = "dall-e-3" |
|
self.image_size_dalle3 = "1792x1024" |
|
self.video_frame_size = (1280, 720) |
|
|
|
self.elevenlabs_api_key = None |
|
self.USE_ELEVENLABS = False |
|
self.elevenlabs_client = None |
|
self.elevenlabs_voice_id = default_elevenlabs_voice_id |
|
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: |
|
self.elevenlabs_voice_settings = VoiceSettings( |
|
stability=0.60, |
|
similarity_boost=0.80, |
|
style=0.15, |
|
use_speaker_boost=True |
|
) |
|
else: |
|
self.elevenlabs_voice_settings = None |
|
|
|
self.pexels_api_key = None |
|
self.USE_PEXELS = False |
|
|
|
self.runway_api_key = None |
|
self.USE_RUNWAYML = False |
|
self.runway_client = None |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient: |
|
try: |
|
if os.getenv("RUNWAYML_API_SECRET"): |
|
self.runway_client = RunwayMLAPIClient() |
|
logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.") |
|
except Exception as e_runway_init: |
|
logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True) |
|
|
|
logger.info("VisualEngine initialized.") |
|
|
|
def set_openai_api_key(self, k): |
|
self.openai_api_key = k |
|
self.USE_AI_IMAGE_GENERATION = bool(k) |
|
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}") |
|
|
|
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None): |
|
self.elevenlabs_api_key = api_key |
|
if voice_id_from_secret: |
|
self.elevenlabs_voice_id = voice_id_from_secret |
|
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: |
|
try: |
|
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key) |
|
self.USE_ELEVENLABS = bool(self.elevenlabs_client) |
|
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).") |
|
except Exception as e: |
|
logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True) |
|
self.USE_ELEVENLABS = False |
|
else: |
|
self.USE_ELEVENLABS = False |
|
logger.info("ElevenLabs Disabled (no key or SDK issue).") |
|
|
|
def set_pexels_api_key(self, k): |
|
self.pexels_api_key = k |
|
self.USE_PEXELS = bool(k) |
|
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}") |
|
|
|
def set_runway_api_key(self, k): |
|
self.runway_api_key = k |
|
if k: |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient: |
|
if not self.runway_client: |
|
try: |
|
if not os.getenv("RUNWAYML_API_SECRET"): |
|
os.environ["RUNWAYML_API_SECRET"] = k |
|
logger.info("Setting RUNWAYML_API_SECRET env var from provided key.") |
|
self.runway_client = RunwayMLAPIClient() |
|
self.USE_RUNWAYML = True |
|
logger.info("RunwayML Client initialized successfully via set_runway_api_key.") |
|
except Exception as e_client_init: |
|
logger.error(f"RunwayML Client init failed in set_runway_api_key: {e_client_init}", exc_info=True) |
|
self.USE_RUNWAYML = False |
|
else: |
|
self.USE_RUNWAYML = True |
|
logger.info("RunwayML Client was already initialized.") |
|
else: |
|
logger.warning("RunwayML SDK not imported. API key set, but integration requires SDK.") |
|
self.USE_RUNWAYML = False |
|
else: |
|
self.USE_RUNWAYML = False |
|
logger.info("RunwayML Disabled (no API key).") |
|
|
|
def _image_to_data_uri(self, image_path): |
|
try: |
|
mime_type, _ = mimetypes.guess_type(image_path) |
|
if not mime_type: |
|
ext = os.path.splitext(image_path)[1].lower() |
|
if ext == ".png": |
|
mime_type = "image/png" |
|
elif ext in [".jpg", ".jpeg"]: |
|
mime_type = "image/jpeg" |
|
else: |
|
mime_type = "application/octet-stream" |
|
logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.") |
|
with open(image_path, "rb") as image_file: |
|
encoded_string = base64.b64encode(image_file.read()).decode('utf-8') |
|
data_uri = f"data:{mime_type};base64,{encoded_string}" |
|
logger.debug(f"Data URI for {image_path} (first 100): {data_uri[:100]}") |
|
return data_uri |
|
except Exception as e: |
|
logger.error(f"Error converting {image_path} to data URI: {e}", exc_info=True) |
|
return None |
|
|
|
def _map_resolution_to_runway_ratio(self, width, height): |
|
ratio_str = f"{width}:{height}" |
|
supported_ratios = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"] |
|
if ratio_str in supported_ratios: |
|
return ratio_str |
|
logger.warning(f"Res {ratio_str} not directly Gen-4 supported. Default 1280:720.") |
|
return "1280:720" |
|
|
|
def _get_text_dimensions(self, text_content, font_obj): |
|
default_char_height = getattr(font_obj, 'size', self.font_size_pil) |
|
if not text_content: |
|
return 0, default_char_height |
|
try: |
|
if hasattr(font_obj, 'getbbox'): |
|
bbox = font_obj.getbbox(text_content) |
|
w = bbox[2] - bbox[0] |
|
h = bbox[3] - bbox[1] |
|
return w, h if h > 0 else default_char_height |
|
elif hasattr(font_obj, 'getsize'): |
|
w, h = font_obj.getsize(text_content) |
|
return w, h if h > 0 else default_char_height |
|
else: |
|
return int(len(text_content) * default_char_height * 0.6), int(default_char_height * 1.2) |
|
except Exception as e: |
|
logger.warning(f"Error in _get_text_dimensions: {e}") |
|
return int(len(text_content) * self.font_size_pil * 0.6), int(self.font_size_pil * 1.2) |
|
|
|
def _create_placeholder_image_content(self, text_description, filename, size=None): |
|
if size is None: |
|
size = self.video_frame_size |
|
img = Image.new('RGB', size, color=(20, 20, 40)) |
|
d = ImageDraw.Draw(img) |
|
padding = 25 |
|
max_w = size[0] - (2 * padding) |
|
lines = [] |
|
if not text_description: |
|
text_description = "(Placeholder Image)" |
|
words = text_description.split() |
|
current_line = "" |
|
for word_idx, word in enumerate(words): |
|
prospective_line_addition = word + (" " if word_idx < len(words) - 1 else "") |
|
test_line = current_line + prospective_line_addition |
|
current_line_width, _ = self._get_text_dimensions(test_line, self.font) |
|
if current_line_width == 0 and test_line.strip(): |
|
current_line_width = len(test_line) * (self.font_size_pil * 0.6) |
|
if current_line_width <= max_w: |
|
current_line = test_line |
|
else: |
|
if current_line.strip(): |
|
lines.append(current_line.strip()) |
|
current_line = prospective_line_addition |
|
if current_line.strip(): |
|
lines.append(current_line.strip()) |
|
if not lines and text_description: |
|
avg_char_width, _ = self._get_text_dimensions("W", self.font) |
|
if avg_char_width == 0: |
|
avg_char_width = self.font_size_pil * 0.6 |
|
chars_per_line = int(max_w / avg_char_width) if avg_char_width > 0 else 20 |
|
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else "")) |
|
elif not lines: |
|
lines.append("(Placeholder Error)") |
|
_, single_line_h = self._get_text_dimensions("Ay", self.font) |
|
single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2 |
|
max_lines_to_display = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1 |
|
if max_lines_to_display <= 0: |
|
max_lines_to_display = 1 |
|
y_text_start = padding + (size[1] - (2 * padding) - max_lines_to_display * (single_line_h + 2)) / 2.0 |
|
y_text = y_text_start |
|
for i in range(max_lines_to_display): |
|
line_content = lines[i] |
|
line_w, _ = self._get_text_dimensions(line_content, self.font) |
|
if line_w == 0 and line_content.strip(): |
|
line_w = len(line_content) * (self.font_size_pil * 0.6) |
|
x_text = (size[0] - line_w) / 2.0 |
|
try: |
|
d.text((x_text, y_text), line_content, font=self.font, fill=(200, 200, 180)) |
|
except Exception as e_draw: |
|
logger.error(f"Pillow d.text error: {e_draw} for line '{line_content}'") |
|
y_text += single_line_h + 2 |
|
if i == 6 and max_lines_to_display > 7: |
|
try: |
|
d.text((x_text, y_text), "...", font=self.font, fill=(200, 200, 180)) |
|
except Exception as e_ellipsis: |
|
logger.error(f"Pillow d.text ellipsis error: {e_ellipsis}") |
|
break |
|
filepath = os.path.join(self.output_dir, filename) |
|
try: |
|
img.save(filepath) |
|
return filepath |
|
except Exception as e: |
|
logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True) |
|
return None |
|
|
|
def _search_pexels_image(self, query, output_filename_base): |
|
|
|
if not self.USE_PEXELS or not self.pexels_api_key: |
|
return None |
|
headers = {"Authorization": self.pexels_api_key} |
|
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"} |
|
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg")\ |
|
.replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg") |
|
filepath = os.path.join(self.output_dir, pexels_filename) |
|
try: |
|
logger.info(f"Pexels search: '{query}'") |
|
effective_query = " ".join(query.split()[:5]) |
|
params["query"] = effective_query |
|
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data.get("photos") and len(data["photos"]) > 0: |
|
photo_url = data["photos"][0]["src"]["large2x"] |
|
image_response = requests.get(photo_url, timeout=60) |
|
image_response.raise_for_status() |
|
img_data = Image.open(io.BytesIO(image_response.content)) |
|
if img_data.mode != 'RGB': |
|
img_data = img_data.convert('RGB') |
|
img_data.save(filepath) |
|
logger.info(f"Pexels image saved: {filepath}") |
|
return filepath |
|
else: |
|
logger.info(f"No photos found on Pexels for query: '{effective_query}'") |
|
return None |
|
except requests.exceptions.RequestException as e_req: |
|
logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True) |
|
except json.JSONDecodeError as e_json: |
|
logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True) |
|
except IOError as e_io: |
|
logger.error(f"Pexels image save error for query '{query}': {e_io}", exc_info=True) |
|
except Exception as e: |
|
logger.error(f"Unexpected Pexels error for query '{query}': {e}", exc_info=True) |
|
return None |
|
|
|
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, |
|
scene_identifier_filename_base, target_duration_seconds=5): |
|
if not self.USE_RUNWAYML or not self.runway_client: |
|
logger.warning("RunwayML not enabled/client not init. Skip video.") |
|
return None |
|
if not input_image_path or not os.path.exists(input_image_path): |
|
logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}") |
|
return None |
|
image_data_uri = self._image_to_data_uri(input_image_path) |
|
if not image_data_uri: |
|
return None |
|
runway_duration = 10 if target_duration_seconds > 7 else 5 |
|
runway_ratio_str = self._map_resolution_to_runway_ratio( |
|
self.video_frame_size[0], self.video_frame_size[1] |
|
) |
|
output_video_filename = scene_identifier_filename_base.replace( |
|
".png", f"_runway_gen4_d{runway_duration}s.mp4" |
|
) |
|
output_video_filepath = os.path.join(self.output_dir, output_video_filename) |
|
logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', " |
|
f"img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'") |
|
try: |
|
task = self.runway_client.image_to_video.create( |
|
model='gen4_turbo', |
|
prompt_image=image_data_uri, |
|
prompt_text=text_prompt_for_motion, |
|
duration=runway_duration, |
|
ratio=runway_ratio_str |
|
) |
|
logger.info(f"Runway Gen-4 task ID: {task.id}. Polling...") |
|
poll_interval = 10 |
|
max_polls = 36 |
|
for _ in range(max_polls): |
|
time.sleep(poll_interval) |
|
task_details = self.runway_client.tasks.retrieve(id=task.id) |
|
logger.info(f"Runway task {task.id} status: {task_details.status}") |
|
if task_details.status == 'SUCCEEDED': |
|
output_url = ( |
|
getattr(getattr(task_details, 'output', None), 'url', None) |
|
or ( |
|
getattr(task_details, 'artifacts', None) |
|
and task_details.artifacts[0].url |
|
if task_details.artifacts and hasattr(task_details.artifacts[0], 'url') |
|
else None |
|
) |
|
or ( |
|
getattr(task_details, 'artifacts', None) |
|
and task_details.artifacts[0].download_url |
|
if task_details.artifacts and hasattr(task_details.artifacts[0], 'download_url') |
|
else None |
|
) |
|
) |
|
if not output_url: |
|
logger.error( |
|
f"Runway task {task.id} SUCCEEDED, but no output URL in details: " |
|
f"{vars(task_details) if hasattr(task_details, '__dict__') else task_details}" |
|
) |
|
return None |
|
logger.info(f"Runway task {task.id} SUCCEEDED. Downloading from: {output_url}") |
|
video_response = requests.get(output_url, stream=True, timeout=300) |
|
video_response.raise_for_status() |
|
with open(output_video_filepath, 'wb') as f: |
|
for chunk in video_response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
logger.info(f"Runway Gen-4 video saved: {output_video_filepath}") |
|
return output_video_filepath |
|
elif task_details.status in ['FAILED', 'ABORTED']: |
|
em = ( |
|
getattr(task_details, 'error_message', None) |
|
or getattr(getattr(task_details, 'output', None), 'error', "Unknown error") |
|
) |
|
logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {em}") |
|
return None |
|
logger.warning(f"Runway task {task.id} timed out.") |
|
return None |
|
except AttributeError as ae: |
|
logger.error(f"RunwayML SDK AttributeError: {ae}. SDK/methods might differ.", exc_info=True) |
|
return None |
|
except Exception as e: |
|
logger.error(f"Runway Gen-4 API error: {e}", exc_info=True) |
|
return None |
|
|
|
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None): |
|
if sz is None: |
|
sz = self.video_frame_size |
|
fp = os.path.join(self.output_dir, fn) |
|
tc = None |
|
try: |
|
tc = TextClip( |
|
td, |
|
fontsize=50, |
|
color='white', |
|
font=self.video_overlay_font, |
|
bg_color='black', |
|
size=sz, |
|
method='caption' |
|
).set_duration(dur) |
|
tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2) |
|
logger.info(f"Generic placeholder video: {fp}") |
|
return fp |
|
except Exception as e: |
|
logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True) |
|
return None |
|
finally: |
|
if tc and hasattr(tc, 'close'): |
|
tc.close() |
|
|
|
def generate_scene_asset( |
|
self, |
|
image_generation_prompt_text, |
|
motion_prompt_text_for_video, |
|
scene_data, |
|
scene_identifier_filename_base, |
|
generate_as_video_clip=False, |
|
runway_target_duration=5 |
|
): |
|
base_name, _ = os.path.splitext(scene_identifier_filename_base) |
|
asset_info = { |
|
'path': None, |
|
'type': 'none', |
|
'error': True, |
|
'prompt_used': image_generation_prompt_text, |
|
'error_message': 'Asset generation init failed' |
|
} |
|
input_image_for_runway_path = None |
|
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png") |
|
base_image_filepath = os.path.join(self.output_dir, base_image_filename) |
|
|
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
max_r = 2 |
|
for att_n in range(max_r): |
|
try: |
|
logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...") |
|
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0) |
|
r = cl.images.generate( |
|
model=self.dalle_model, |
|
prompt=image_generation_prompt_text, |
|
n=1, |
|
size=self.image_size_dalle3, |
|
quality="hd", |
|
response_format="url", |
|
style="vivid" |
|
) |
|
iu = r.data[0].url |
|
rp = getattr(r.data[0], 'revised_prompt', None) |
|
if rp: |
|
logger.info(f"DALL-E revised: {rp[:70]}...") |
|
ir = requests.get(iu, timeout=120) |
|
ir.raise_for_status() |
|
id_img = Image.open(io.BytesIO(ir.content)) |
|
if id_img.mode != 'RGB': |
|
id_img = id_img.convert('RGB') |
|
id_img.save(base_image_filepath) |
|
logger.info(f"DALL-E base img saved: {base_image_filepath}") |
|
input_image_for_runway_path = base_image_filepath |
|
asset_info = { |
|
'path': base_image_filepath, |
|
'type': 'image', |
|
'error': False, |
|
'prompt_used': image_generation_prompt_text, |
|
'revised_prompt': rp |
|
} |
|
break |
|
except openai.RateLimitError as e: |
|
logger.warning(f"OpenAI RateLimit {att_n+1}:{e}. Retry...") |
|
time.sleep(5 * (att_n + 1)) |
|
asset_info['error_message'] = str(e) |
|
except Exception as e: |
|
logger.error(f"DALL-E base img error: {e}", exc_info=True) |
|
asset_info['error_message'] = str(e) |
|
break |
|
if asset_info['error']: |
|
logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.") |
|
|
|
if asset_info['error'] and self.USE_PEXELS: |
|
logger.info("Trying Pexels for base img.") |
|
pqt = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}") |
|
pp = self._search_pexels_image(pqt, base_image_filename) |
|
if pp: |
|
input_image_for_runway_path = pp |
|
asset_info = { |
|
'path': pp, |
|
'type': 'image', |
|
'error': False, |
|
'prompt_used': f"Pexels:{pqt}" |
|
} |
|
else: |
|
current_em = asset_info.get('error_message', "") |
|
asset_info['error_message'] = (current_em + " Pexels failed for base.").strip() |
|
|
|
if asset_info['error']: |
|
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.") |
|
ppt = asset_info.get('prompt_used', image_generation_prompt_text) |
|
php = self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...", base_image_filename) |
|
if php: |
|
input_image_for_runway_path = php |
|
asset_info = { |
|
'path': php, |
|
'type': 'image', |
|
'error': False, |
|
'prompt_used': ppt |
|
} |
|
else: |
|
current_em = asset_info.get('error_message', "") |
|
asset_info['error_message'] = (current_em + " Base placeholder failed.").strip() |
|
|
|
if generate_as_video_clip: |
|
if not input_image_for_runway_path: |
|
logger.error("RunwayML video: base img failed.") |
|
asset_info['error'] = True |
|
asset_info['error_message'] = (asset_info.get('error_message', "") + " Base img miss, Runway abort.").strip() |
|
asset_info['type'] = 'none' |
|
return asset_info |
|
if self.USE_RUNWAYML: |
|
logger.info(f"Runway Gen-4 video for {base_name} using base: {input_image_for_runway_path}") |
|
video_path = self._generate_video_clip_with_runwayml( |
|
motion_prompt_text_for_video, |
|
input_image_for_runway_path, |
|
base_name, |
|
runway_target_duration |
|
) |
|
if video_path and os.path.exists(video_path): |
|
asset_info = { |
|
'path': video_path, |
|
'type': 'video', |
|
'error': False, |
|
'prompt_used': motion_prompt_text_for_video, |
|
'base_image_path': input_image_for_runway_path |
|
} |
|
else: |
|
logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.") |
|
asset_info['error'] = True |
|
asset_info['error_message'] = ( |
|
asset_info.get('error_message', "Base img ok.") + |
|
" RunwayML video fail; use base img." |
|
).strip() |
|
asset_info['path'] = input_image_for_runway_path |
|
asset_info['type'] = 'image' |
|
asset_info['prompt_used'] = image_generation_prompt_text |
|
else: |
|
logger.warning("RunwayML selected but disabled. Use base img.") |
|
asset_info['error'] = True |
|
asset_info['error_message'] = ( |
|
asset_info.get('error_message', "Base img ok.") + |
|
" RunwayML disabled; use base img." |
|
).strip() |
|
asset_info['path'] = input_image_for_runway_path |
|
asset_info['type'] = 'image' |
|
asset_info['prompt_used'] = image_generation_prompt_text |
|
|
|
return asset_info |
|
|
|
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"): |
|
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: |
|
logger.info("11L skip.") |
|
return None |
|
|
|
afp = os.path.join(self.output_dir, output_filename) |
|
|
|
try: |
|
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...") |
|
asm = None |
|
|
|
|
|
if hasattr(self.elevenlabs_client, 'text_to_speech') and \ |
|
hasattr(self.elevenlabs_client.text_to_speech, 'stream'): |
|
asm = self.elevenlabs_client.text_to_speech.stream |
|
logger.info("Using 11L .text_to_speech.stream()") |
|
|
|
elif hasattr(self.elevenlabs_client, 'generate_stream'): |
|
asm = self.elevenlabs_client.generate_stream |
|
logger.info("Using 11L .generate_stream()") |
|
|
|
elif hasattr(self.elevenlabs_client, 'generate'): |
|
logger.info("Using 11L .generate()") |
|
if Voice and self.elevenlabs_voice_settings: |
|
vp = Voice( |
|
voice_id=str(self.elevenlabs_voice_id), |
|
settings=self.elevenlabs_voice_settings |
|
) |
|
else: |
|
vp = str(self.elevenlabs_voice_id) |
|
|
|
ab = self.elevenlabs_client.generate( |
|
text=text_to_narrate, |
|
voice=vp, |
|
model="eleven_multilingual_v2" |
|
) |
|
|
|
with open(afp, "wb") as f: |
|
f.write(ab) |
|
|
|
logger.info(f"11L audio (non-stream): {afp}") |
|
return afp |
|
|
|
else: |
|
logger.error("No 11L audio method.") |
|
return None |
|
|
|
|
|
if asm: |
|
vps = {"voice_id": str(self.elevenlabs_voice_id)} |
|
if self.elevenlabs_voice_settings: |
|
if hasattr(self.elevenlabs_voice_settings, 'model_dump'): |
|
vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump() |
|
elif hasattr(self.elevenlabs_voice_settings, 'dict'): |
|
vps["voice_settings"] = self.elevenlabs_voice_settings.dict() |
|
else: |
|
vps["voice_settings"] = self.elevenlabs_voice_settings |
|
|
|
adi = asm( |
|
text=text_to_narrate, |
|
model_id="eleven_multilingual_v2", |
|
**vps |
|
) |
|
|
|
with open(afp, "wb") as f: |
|
for c in adi: |
|
if c: |
|
f.write(c) |
|
|
|
logger.info(f"11L audio (stream): {afp}") |
|
return afp |
|
|
|
except Exception as e: |
|
logger.error(f"11L audio error: {e}", exc_info=True) |
|
return None |
|
|
|
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24): |
|
if not asset_data_list: |
|
logger.warning("No assets for animatic.") |
|
return None |
|
|
|
processed_clips = [] |
|
narration_clip = None |
|
final_clip = None |
|
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.") |
|
|
|
for i, asset_info in enumerate(asset_data_list): |
|
asset_path = asset_info.get('path') |
|
asset_type = asset_info.get('type') |
|
scene_dur = asset_info.get('duration', 4.5) |
|
scene_num = asset_info.get('scene_num', i + 1) |
|
key_action = asset_info.get('key_action', '') |
|
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s") |
|
|
|
if not (asset_path and os.path.exists(asset_path)): |
|
logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.") |
|
continue |
|
if scene_dur <= 0: |
|
logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.") |
|
continue |
|
|
|
current_scene_mvpy_clip = None |
|
try: |
|
if asset_type == 'image': |
|
pil_img = Image.open(asset_path) |
|
logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}") |
|
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy() |
|
thumb = img_rgba.copy() |
|
rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR |
|
thumb.thumbnail(self.video_frame_size, rf) |
|
|
|
cv_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0)) |
|
xo = (self.video_frame_size[0] - thumb.width) // 2 |
|
yo = (self.video_frame_size[1] - thumb.height) // 2 |
|
cv_rgba.paste(thumb, (xo, yo), thumb) |
|
final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0)) |
|
final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3]) |
|
|
|
dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png") |
|
final_rgb_pil.save(dbg_path) |
|
logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}") |
|
|
|
frame_np = np.array(final_rgb_pil, dtype=np.uint8) |
|
if not frame_np.flags['C_CONTIGUOUS']: |
|
frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8) |
|
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}") |
|
|
|
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3: |
|
logger.error(f"S{scene_num}: Invalid NumPy. Skip.") |
|
continue |
|
|
|
clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur) |
|
mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png") |
|
clip_base.save_frame(mvpy_dbg_path, t=0.1) |
|
logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}") |
|
|
|
clip_fx = clip_base |
|
try: |
|
es = random.uniform(1.03, 1.08) |
|
clip_fx = clip_base.fx( |
|
vfx.resize, |
|
lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1 |
|
).set_position('center') |
|
except Exception as e: |
|
logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False) |
|
|
|
current_scene_mvpy_clip = clip_fx |
|
|
|
elif asset_type == 'video': |
|
src_clip = None |
|
try: |
|
src_clip = VideoFileClip( |
|
asset_path, |
|
target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None, |
|
audio=False |
|
) |
|
tmp_clip = src_clip |
|
if src_clip.duration != scene_dur: |
|
if src_clip.duration > scene_dur: |
|
tmp_clip = src_clip.subclip(0, scene_dur) |
|
else: |
|
if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1: |
|
tmp_clip = src_clip.loop(duration=scene_dur) |
|
else: |
|
tmp_clip = src_clip.set_duration(src_clip.duration) |
|
logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).") |
|
current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur) |
|
if current_scene_mvpy_clip.size != list(self.video_frame_size): |
|
current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size) |
|
except Exception as e: |
|
logger.error(f"S{scene_num} Video load error '{asset_path}': {e}", exc_info=True) |
|
continue |
|
finally: |
|
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, 'close'): |
|
src_clip.close() |
|
else: |
|
logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.") |
|
continue |
|
|
|
if current_scene_mvpy_clip and key_action: |
|
try: |
|
to_dur = min(current_scene_mvpy_clip.duration - 0.5, |
|
current_scene_mvpy_clip.duration * 0.8) if current_scene_mvpy_clip.duration > 0.5 else current_scene_mvpy_clip.duration |
|
to_start = 0.25 |
|
if to_dur > 0: |
|
txt_c = TextClip( |
|
f"Scene {scene_num}\n{key_action}", |
|
fontsize=self.video_overlay_font_size, |
|
color=self.video_overlay_font_color, |
|
font=self.video_overlay_font, |
|
bg_color='rgba(10,10,20,0.7)', |
|
method='caption', |
|
align='West', |
|
size=(self.video_frame_size[0] * 0.9, None), |
|
kerning=-1, |
|
stroke_color='black', |
|
stroke_width=1.5 |
|
).set_duration(to_dur).set_start(to_start).set_position(('center', 0.92), relative=True) |
|
current_scene_mvpy_clip = CompositeVideoClip( |
|
[current_scene_mvpy_clip, txt_c], |
|
size=self.video_frame_size, |
|
use_bgclip=True |
|
) |
|
else: |
|
logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.") |
|
except Exception as e: |
|
logger.error(f"S{scene_num} TextClip error: {e}. No text.", exc_info=True) |
|
|
|
if current_scene_mvpy_clip: |
|
processed_clips.append(current_scene_mvpy_clip) |
|
logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.") |
|
except Exception as e: |
|
logger.error(f"MAJOR Error S{scene_num} ({asset_path}): {e}", exc_info=True) |
|
finally: |
|
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, 'close'): |
|
try: |
|
current_scene_mvpy_clip.close() |
|
except Exception: |
|
pass |
|
|
|
if not processed_clips: |
|
logger.warning("No clips processed. Abort.") |
|
return None |
|
|
|
td = 0.75 |
|
try: |
|
logger.info(f"Concatenating {len(processed_clips)} clips.") |
|
if len(processed_clips) > 1: |
|
final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose") |
|
elif processed_clips: |
|
final_clip = processed_clips[0] |
|
if not final_clip: |
|
logger.error("Concatenation failed.") |
|
return None |
|
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s") |
|
if td > 0 and final_clip.duration > 0: |
|
if final_clip.duration > td * 2: |
|
final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td) |
|
else: |
|
final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0)) |
|
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0: |
|
try: |
|
narration_clip = AudioFileClip(overall_narration_path) |
|
final_clip = final_clip.set_audio(narration_clip) |
|
logger.info("Narration added.") |
|
except Exception as e: |
|
logger.error(f"Narration add error: {e}", exc_info=True) |
|
elif final_clip.duration <= 0: |
|
logger.warning("Video no duration. No audio.") |
|
if final_clip and final_clip.duration > 0: |
|
op = os.path.join(self.output_dir, output_filename) |
|
logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)") |
|
final_clip.write_videofile( |
|
op, |
|
fps=fps, |
|
codec='libx264', |
|
preset='medium', |
|
audio_codec='aac', |
|
temp_audiofile=os.path.join( |
|
self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a' |
|
), |
|
remove_temp=True, |
|
threads=os.cpu_count() or 2, |
|
logger='bar', |
|
bitrate="5000k", |
|
ffmpeg_params=["-pix_fmt", "yuv420p"] |
|
) |
|
logger.info(f"Video created:{op}") |
|
return op |
|
else: |
|
logger.error("Final clip invalid. No write.") |
|
return None |
|
except Exception as e: |
|
logger.error(f"Video write error: {e}", exc_info=True) |
|
return None |
|
finally: |
|
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.") |
|
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else []) |
|
for clip_obj_to_close in all_clips_to_close: |
|
if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'): |
|
try: |
|
clip_obj_to_close.close() |
|
except Exception as e_close: |
|
logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}") |
|
|