CingenAI / core /visual_engine.py
mgbam's picture
Update core/visual_engine.py
a219e07 verified
raw
history blame
42.4 kB
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import json
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
import mimetypes
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- MONKEY PATCH ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'):
Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'):
Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp:
print(f"WARNING: ANTIALIAS patch error: {e_mp}")
# --- SERVICE CLIENT IMPORTS ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported.")
except Exception as e_eleven:
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
RUNWAYML_SDK_IMPORTED = False
RunwayMLAPIClient = None
try:
from runwayml import RunwayML as ImportedRunwayMLClient
RunwayMLAPIClient = ImportedRunwayMLClient
RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported successfully.")
except ImportError:
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf"
font_paths_to_try = [
self.font_filename,
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
"/System/Library/Fonts/Supplemental/Arial.ttf",
"C:/Windows/Fonts/arial.ttf",
"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold'
try:
if self.font_path_pil:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
logger.info(f"Pillow font: {self.font_path_pil}.")
else:
self.font = ImageFont.load_default()
logger.warning("Default Pillow font.")
self.font_size_pil = 10
except IOError as e_font:
logger.error(f"Pillow font IOError: {e_font}. Default.")
self.font = ImageFont.load_default()
self.font_size_pil = 10
self.openai_api_key = None
self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"
self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None
self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(
stability=0.60,
similarity_boost=0.80,
style=0.15,
use_speaker_boost=True
)
else:
self.elevenlabs_voice_settings = None
self.pexels_api_key = None
self.USE_PEXELS = False
self.runway_api_key = None
self.USE_RUNWAYML = False
self.runway_client = None
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
try:
if os.getenv("RUNWAYML_API_SECRET"):
self.runway_client = RunwayMLAPIClient()
logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.")
except Exception as e_runway_init:
logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True)
logger.info("VisualEngine initialized.")
def set_openai_api_key(self, k):
self.openai_api_key = k
self.USE_AI_IMAGE_GENERATION = bool(k)
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
self.elevenlabs_api_key = api_key
if voice_id_from_secret:
self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
self.USE_ELEVENLABS = bool(self.elevenlabs_client)
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e:
logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True)
self.USE_ELEVENLABS = False
else:
self.USE_ELEVENLABS = False
logger.info("ElevenLabs Disabled (no key or SDK issue).")
def set_pexels_api_key(self, k):
self.pexels_api_key = k
self.USE_PEXELS = bool(k)
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
if not self.runway_client:
try:
if not os.getenv("RUNWAYML_API_SECRET"):
os.environ["RUNWAYML_API_SECRET"] = k
logger.info("Setting RUNWAYML_API_SECRET env var from provided key.")
self.runway_client = RunwayMLAPIClient()
self.USE_RUNWAYML = True
logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
except Exception as e_client_init:
logger.error(f"RunwayML Client init failed in set_runway_api_key: {e_client_init}", exc_info=True)
self.USE_RUNWAYML = False
else:
self.USE_RUNWAYML = True
logger.info("RunwayML Client was already initialized.")
else:
logger.warning("RunwayML SDK not imported. API key set, but integration requires SDK.")
self.USE_RUNWAYML = False
else:
self.USE_RUNWAYML = False
logger.info("RunwayML Disabled (no API key).")
def _image_to_data_uri(self, image_path):
try:
mime_type, _ = mimetypes.guess_type(image_path)
if not mime_type:
ext = os.path.splitext(image_path)[1].lower()
if ext == ".png":
mime_type = "image/png"
elif ext in [".jpg", ".jpeg"]:
mime_type = "image/jpeg"
else:
mime_type = "application/octet-stream"
logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
data_uri = f"data:{mime_type};base64,{encoded_string}"
logger.debug(f"Data URI for {image_path} (first 100): {data_uri[:100]}")
return data_uri
except Exception as e:
logger.error(f"Error converting {image_path} to data URI: {e}", exc_info=True)
return None
def _map_resolution_to_runway_ratio(self, width, height):
ratio_str = f"{width}:{height}"
supported_ratios = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
if ratio_str in supported_ratios:
return ratio_str
logger.warning(f"Res {ratio_str} not directly Gen-4 supported. Default 1280:720.")
return "1280:720"
def _get_text_dimensions(self, text_content, font_obj):
default_char_height = getattr(font_obj, 'size', self.font_size_pil)
if not text_content:
return 0, default_char_height
try:
if hasattr(font_obj, 'getbbox'):
bbox = font_obj.getbbox(text_content)
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
return w, h if h > 0 else default_char_height
elif hasattr(font_obj, 'getsize'):
w, h = font_obj.getsize(text_content)
return w, h if h > 0 else default_char_height
else:
return int(len(text_content) * default_char_height * 0.6), int(default_char_height * 1.2)
except Exception as e:
logger.warning(f"Error in _get_text_dimensions: {e}")
return int(len(text_content) * self.font_size_pil * 0.6), int(self.font_size_pil * 1.2)
def _create_placeholder_image_content(self, text_description, filename, size=None):
if size is None:
size = self.video_frame_size
img = Image.new('RGB', size, color=(20, 20, 40))
d = ImageDraw.Draw(img)
padding = 25
max_w = size[0] - (2 * padding)
lines = []
if not text_description:
text_description = "(Placeholder Image)"
words = text_description.split()
current_line = ""
for word_idx, word in enumerate(words):
prospective_line_addition = word + (" " if word_idx < len(words) - 1 else "")
test_line = current_line + prospective_line_addition
current_line_width, _ = self._get_text_dimensions(test_line, self.font)
if current_line_width == 0 and test_line.strip():
current_line_width = len(test_line) * (self.font_size_pil * 0.6)
if current_line_width <= max_w:
current_line = test_line
else:
if current_line.strip():
lines.append(current_line.strip())
current_line = prospective_line_addition
if current_line.strip():
lines.append(current_line.strip())
if not lines and text_description:
avg_char_width, _ = self._get_text_dimensions("W", self.font)
if avg_char_width == 0:
avg_char_width = self.font_size_pil * 0.6
chars_per_line = int(max_w / avg_char_width) if avg_char_width > 0 else 20
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
elif not lines:
lines.append("(Placeholder Error)")
_, single_line_h = self._get_text_dimensions("Ay", self.font)
single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_lines_to_display = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
if max_lines_to_display <= 0:
max_lines_to_display = 1
y_text_start = padding + (size[1] - (2 * padding) - max_lines_to_display * (single_line_h + 2)) / 2.0
y_text = y_text_start
for i in range(max_lines_to_display):
line_content = lines[i]
line_w, _ = self._get_text_dimensions(line_content, self.font)
if line_w == 0 and line_content.strip():
line_w = len(line_content) * (self.font_size_pil * 0.6)
x_text = (size[0] - line_w) / 2.0
try:
d.text((x_text, y_text), line_content, font=self.font, fill=(200, 200, 180))
except Exception as e_draw:
logger.error(f"Pillow d.text error: {e_draw} for line '{line_content}'")
y_text += single_line_h + 2
if i == 6 and max_lines_to_display > 7:
try:
d.text((x_text, y_text), "...", font=self.font, fill=(200, 200, 180))
except Exception as e_ellipsis:
logger.error(f"Pillow d.text ellipsis error: {e_ellipsis}")
break
filepath = os.path.join(self.output_dir, filename)
try:
img.save(filepath)
return filepath
except Exception as e:
logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True)
return None
def _search_pexels_image(self, query, output_filename_base):
# <<< CORRECTED METHOD >>>
if not self.USE_PEXELS or not self.pexels_api_key:
return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg")\
.replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Pexels search: '{query}'")
effective_query = " ".join(query.split()[:5])
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status()
data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_url = data["photos"][0]["src"]["large2x"]
image_response = requests.get(photo_url, timeout=60)
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB':
img_data = img_data.convert('RGB')
img_data.save(filepath)
logger.info(f"Pexels image saved: {filepath}")
return filepath
else:
logger.info(f"No photos found on Pexels for query: '{effective_query}'")
return None
except requests.exceptions.RequestException as e_req:
logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True)
except json.JSONDecodeError as e_json:
logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True)
except IOError as e_io:
logger.error(f"Pexels image save error for query '{query}': {e_io}", exc_info=True)
except Exception as e:
logger.error(f"Unexpected Pexels error for query '{query}': {e}", exc_info=True)
return None
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path,
scene_identifier_filename_base, target_duration_seconds=5):
if not self.USE_RUNWAYML or not self.runway_client:
logger.warning("RunwayML not enabled/client not init. Skip video.")
return None
if not input_image_path or not os.path.exists(input_image_path):
logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}")
return None
image_data_uri = self._image_to_data_uri(input_image_path)
if not image_data_uri:
return None
runway_duration = 10 if target_duration_seconds > 7 else 5
runway_ratio_str = self._map_resolution_to_runway_ratio(
self.video_frame_size[0], self.video_frame_size[1]
)
output_video_filename = scene_identifier_filename_base.replace(
".png", f"_runway_gen4_d{runway_duration}s.mp4"
)
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', "
f"img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
try:
task = self.runway_client.image_to_video.create(
model='gen4_turbo',
prompt_image=image_data_uri,
prompt_text=text_prompt_for_motion,
duration=runway_duration,
ratio=runway_ratio_str
)
logger.info(f"Runway Gen-4 task ID: {task.id}. Polling...")
poll_interval = 10
max_polls = 36
for _ in range(max_polls):
time.sleep(poll_interval)
task_details = self.runway_client.tasks.retrieve(id=task.id)
logger.info(f"Runway task {task.id} status: {task_details.status}")
if task_details.status == 'SUCCEEDED':
output_url = (
getattr(getattr(task_details, 'output', None), 'url', None)
or (
getattr(task_details, 'artifacts', None)
and task_details.artifacts[0].url
if task_details.artifacts and hasattr(task_details.artifacts[0], 'url')
else None
)
or (
getattr(task_details, 'artifacts', None)
and task_details.artifacts[0].download_url
if task_details.artifacts and hasattr(task_details.artifacts[0], 'download_url')
else None
)
)
if not output_url:
logger.error(
f"Runway task {task.id} SUCCEEDED, but no output URL in details: "
f"{vars(task_details) if hasattr(task_details, '__dict__') else task_details}"
)
return None
logger.info(f"Runway task {task.id} SUCCEEDED. Downloading from: {output_url}")
video_response = requests.get(output_url, stream=True, timeout=300)
video_response.raise_for_status()
with open(output_video_filepath, 'wb') as f:
for chunk in video_response.iter_content(chunk_size=8192):
f.write(chunk)
logger.info(f"Runway Gen-4 video saved: {output_video_filepath}")
return output_video_filepath
elif task_details.status in ['FAILED', 'ABORTED']:
em = (
getattr(task_details, 'error_message', None)
or getattr(getattr(task_details, 'output', None), 'error', "Unknown error")
)
logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {em}")
return None
logger.warning(f"Runway task {task.id} timed out.")
return None
except AttributeError as ae:
logger.error(f"RunwayML SDK AttributeError: {ae}. SDK/methods might differ.", exc_info=True)
return None
except Exception as e:
logger.error(f"Runway Gen-4 API error: {e}", exc_info=True)
return None
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
if sz is None:
sz = self.video_frame_size
fp = os.path.join(self.output_dir, fn)
tc = None
try:
tc = TextClip(
td,
fontsize=50,
color='white',
font=self.video_overlay_font,
bg_color='black',
size=sz,
method='caption'
).set_duration(dur)
tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Generic placeholder video: {fp}")
return fp
except Exception as e:
logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True)
return None
finally:
if tc and hasattr(tc, 'close'):
tc.close()
def generate_scene_asset(
self,
image_generation_prompt_text,
motion_prompt_text_for_video,
scene_data,
scene_identifier_filename_base,
generate_as_video_clip=False,
runway_target_duration=5
):
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {
'path': None,
'type': 'none',
'error': True,
'prompt_used': image_generation_prompt_text,
'error_message': 'Asset generation init failed'
}
input_image_for_runway_path = None
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r = 2
for att_n in range(max_r):
try:
logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...")
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
r = cl.images.generate(
model=self.dalle_model,
prompt=image_generation_prompt_text,
n=1,
size=self.image_size_dalle3,
quality="hd",
response_format="url",
style="vivid"
)
iu = r.data[0].url
rp = getattr(r.data[0], 'revised_prompt', None)
if rp:
logger.info(f"DALL-E revised: {rp[:70]}...")
ir = requests.get(iu, timeout=120)
ir.raise_for_status()
id_img = Image.open(io.BytesIO(ir.content))
if id_img.mode != 'RGB':
id_img = id_img.convert('RGB')
id_img.save(base_image_filepath)
logger.info(f"DALL-E base img saved: {base_image_filepath}")
input_image_for_runway_path = base_image_filepath
asset_info = {
'path': base_image_filepath,
'type': 'image',
'error': False,
'prompt_used': image_generation_prompt_text,
'revised_prompt': rp
}
break
except openai.RateLimitError as e:
logger.warning(f"OpenAI RateLimit {att_n+1}:{e}. Retry...")
time.sleep(5 * (att_n + 1))
asset_info['error_message'] = str(e)
except Exception as e:
logger.error(f"DALL-E base img error: {e}", exc_info=True)
asset_info['error_message'] = str(e)
break
if asset_info['error']:
logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
if asset_info['error'] and self.USE_PEXELS:
logger.info("Trying Pexels for base img.")
pqt = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pp = self._search_pexels_image(pqt, base_image_filename)
if pp:
input_image_for_runway_path = pp
asset_info = {
'path': pp,
'type': 'image',
'error': False,
'prompt_used': f"Pexels:{pqt}"
}
else:
current_em = asset_info.get('error_message', "")
asset_info['error_message'] = (current_em + " Pexels failed for base.").strip()
if asset_info['error']:
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.")
ppt = asset_info.get('prompt_used', image_generation_prompt_text)
php = self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...", base_image_filename)
if php:
input_image_for_runway_path = php
asset_info = {
'path': php,
'type': 'image',
'error': False,
'prompt_used': ppt
}
else:
current_em = asset_info.get('error_message', "")
asset_info['error_message'] = (current_em + " Base placeholder failed.").strip()
if generate_as_video_clip:
if not input_image_for_runway_path:
logger.error("RunwayML video: base img failed.")
asset_info['error'] = True
asset_info['error_message'] = (asset_info.get('error_message', "") + " Base img miss, Runway abort.").strip()
asset_info['type'] = 'none'
return asset_info
if self.USE_RUNWAYML:
logger.info(f"Runway Gen-4 video for {base_name} using base: {input_image_for_runway_path}")
video_path = self._generate_video_clip_with_runwayml(
motion_prompt_text_for_video,
input_image_for_runway_path,
base_name,
runway_target_duration
)
if video_path and os.path.exists(video_path):
asset_info = {
'path': video_path,
'type': 'video',
'error': False,
'prompt_used': motion_prompt_text_for_video,
'base_image_path': input_image_for_runway_path
}
else:
logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.")
asset_info['error'] = True
asset_info['error_message'] = (
asset_info.get('error_message', "Base img ok.") +
" RunwayML video fail; use base img."
).strip()
asset_info['path'] = input_image_for_runway_path
asset_info['type'] = 'image'
asset_info['prompt_used'] = image_generation_prompt_text
else:
logger.warning("RunwayML selected but disabled. Use base img.")
asset_info['error'] = True
asset_info['error_message'] = (
asset_info.get('error_message', "Base img ok.") +
" RunwayML disabled; use base img."
).strip()
asset_info['path'] = input_image_for_runway_path
asset_info['type'] = 'image'
asset_info['prompt_used'] = image_generation_prompt_text
return asset_info
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
logger.info("11L skip.")
return None
afp = os.path.join(self.output_dir, output_filename)
try:
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...")
asm = None
# Determine which ElevenLabs streaming/non-streaming method to use
if hasattr(self.elevenlabs_client, 'text_to_speech') and \
hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
asm = self.elevenlabs_client.text_to_speech.stream
logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client, 'generate_stream'):
asm = self.elevenlabs_client.generate_stream
logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client, 'generate'):
logger.info("Using 11L .generate()")
if Voice and self.elevenlabs_voice_settings:
vp = Voice(
voice_id=str(self.elevenlabs_voice_id),
settings=self.elevenlabs_voice_settings
)
else:
vp = str(self.elevenlabs_voice_id)
ab = self.elevenlabs_client.generate(
text=text_to_narrate,
voice=vp,
model="eleven_multilingual_v2"
)
with open(afp, "wb") as f:
f.write(ab)
logger.info(f"11L audio (non-stream): {afp}")
return afp
else:
logger.error("No 11L audio method.")
return None
# If a streaming method is available:
if asm:
vps = {"voice_id": str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings, 'model_dump'):
vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings, 'dict'):
vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
else:
vps["voice_settings"] = self.elevenlabs_voice_settings
adi = asm(
text=text_to_narrate,
model_id="eleven_multilingual_v2",
**vps
)
with open(afp, "wb") as f:
for c in adi:
if c:
f.write(c)
logger.info(f"11L audio (stream): {afp}")
return afp
except Exception as e:
logger.error(f"11L audio error: {e}", exc_info=True)
return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list:
logger.warning("No assets for animatic.")
return None
processed_clips = []
narration_clip = None
final_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path = asset_info.get('path')
asset_type = asset_info.get('type')
scene_dur = asset_info.get('duration', 4.5)
scene_num = asset_info.get('scene_num', i + 1)
key_action = asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)):
logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
continue
if scene_dur <= 0:
logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path)
logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy()
rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR
thumb.thumbnail(self.video_frame_size, rf)
cv_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
xo = (self.video_frame_size[0] - thumb.width) // 2
yo = (self.video_frame_size[1] - thumb.height) // 2
cv_rgba.paste(thumb, (xo, yo), thumb)
final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0))
final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3])
dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
final_rgb_pil.save(dbg_path)
logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil, dtype=np.uint8)
if not frame_np.flags['C_CONTIGUOUS']:
frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
continue
clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
clip_base.save_frame(mvpy_dbg_path, t=0.1)
logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try:
es = random.uniform(1.03, 1.08)
clip_fx = clip_base.fx(
vfx.resize,
lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
).set_position('center')
except Exception as e:
logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip = None
try:
src_clip = VideoFileClip(
asset_path,
target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None,
audio=False
)
tmp_clip = src_clip
if src_clip.duration != scene_dur:
if src_clip.duration > scene_dur:
tmp_clip = src_clip.subclip(0, scene_dur)
else:
if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1:
tmp_clip = src_clip.loop(duration=scene_dur)
else:
tmp_clip = src_clip.set_duration(src_clip.duration)
logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
if current_scene_mvpy_clip.size != list(self.video_frame_size):
current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:
logger.error(f"S{scene_num} Video load error '{asset_path}': {e}", exc_info=True)
continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, 'close'):
src_clip.close()
else:
logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.")
continue
if current_scene_mvpy_clip and key_action:
try:
to_dur = min(current_scene_mvpy_clip.duration - 0.5,
current_scene_mvpy_clip.duration * 0.8) if current_scene_mvpy_clip.duration > 0.5 else current_scene_mvpy_clip.duration
to_start = 0.25
if to_dur > 0:
txt_c = TextClip(
f"Scene {scene_num}\n{key_action}",
fontsize=self.video_overlay_font_size,
color=self.video_overlay_font_color,
font=self.video_overlay_font,
bg_color='rgba(10,10,20,0.7)',
method='caption',
align='West',
size=(self.video_frame_size[0] * 0.9, None),
kerning=-1,
stroke_color='black',
stroke_width=1.5
).set_duration(to_dur).set_start(to_start).set_position(('center', 0.92), relative=True)
current_scene_mvpy_clip = CompositeVideoClip(
[current_scene_mvpy_clip, txt_c],
size=self.video_frame_size,
use_bgclip=True
)
else:
logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
except Exception as e:
logger.error(f"S{scene_num} TextClip error: {e}. No text.", exc_info=True)
if current_scene_mvpy_clip:
processed_clips.append(current_scene_mvpy_clip)
logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:
logger.error(f"MAJOR Error S{scene_num} ({asset_path}): {e}", exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, 'close'):
try:
current_scene_mvpy_clip.close()
except Exception:
pass
if not processed_clips:
logger.warning("No clips processed. Abort.")
return None
td = 0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.")
if len(processed_clips) > 1:
final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose")
elif processed_clips:
final_clip = processed_clips[0]
if not final_clip:
logger.error("Concatenation failed.")
return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td > 0 and final_clip.duration > 0:
if final_clip.duration > td * 2:
final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td)
else:
final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0:
try:
narration_clip = AudioFileClip(overall_narration_path)
final_clip = final_clip.set_audio(narration_clip)
logger.info("Narration added.")
except Exception as e:
logger.error(f"Narration add error: {e}", exc_info=True)
elif final_clip.duration <= 0:
logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration > 0:
op = os.path.join(self.output_dir, output_filename)
logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(
op,
fps=fps,
codec='libx264',
preset='medium',
audio_codec='aac',
temp_audiofile=os.path.join(
self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'
),
remove_temp=True,
threads=os.cpu_count() or 2,
logger='bar',
bitrate="5000k",
ffmpeg_params=["-pix_fmt", "yuv420p"]
)
logger.info(f"Video created:{op}")
return op
else:
logger.error("Final clip invalid. No write.")
return None
except Exception as e:
logger.error(f"Video write error: {e}", exc_info=True)
return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
for clip_obj_to_close in all_clips_to_close:
if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
try:
clip_obj_to_close.close()
except Exception as e_close:
logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}")