|
|
|
from PIL import Image, ImageDraw, ImageFont |
|
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip, |
|
CompositeVideoClip, AudioFileClip) |
|
import moviepy.video.fx.all as vfx |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
import time |
|
from elevenlabs import generate as elevenlabs_generate_audio, set_api_key as elevenlabs_set_api_key_func |
|
|
|
class VisualEngine: |
|
def __init__(self, output_dir="temp_cinegen_media"): |
|
self.output_dir = output_dir |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
|
|
self.font_filename = "arial.ttf" |
|
self.font_path_in_container = f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}" |
|
self.font_size_pil = 20 |
|
self.video_overlay_font_size = 30 |
|
self.video_overlay_font_color = 'white' |
|
self.video_overlay_font = 'Arial-Bold' |
|
|
|
try: |
|
self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil) |
|
print(f"Font for placeholders: {self.font_path_in_container}.") |
|
except IOError: |
|
print(f"Warning: Placeholder font '{self.font_path_in_container}' not loaded. Using default.") |
|
self.font = ImageFont.load_default(); self.font_size_pil = 10 |
|
|
|
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False |
|
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024" |
|
self.video_frame_size = (1280, 720) |
|
|
|
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False |
|
self.elevenlabs_voice_id = "Rachel" |
|
|
|
self.pexels_api_key = None; self.USE_PEXELS = False |
|
|
|
def set_openai_api_key(self, api_key): |
|
if api_key: self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = True; print(f"DALL-E ({self.dalle_model}) Ready.") |
|
else: self.USE_AI_IMAGE_GENERATION = False; print("DALL-E Disabled.") |
|
|
|
def set_elevenlabs_api_key(self, api_key): |
|
if api_key: |
|
self.elevenlabs_api_key = api_key |
|
try: |
|
elevenlabs_set_api_key_func(api_key) |
|
self.USE_ELEVENLABS = True |
|
print("ElevenLabs Ready.") |
|
except Exception as e: |
|
print(f"Error setting ElevenLabs API key for library: {e}. ElevenLabs disabled.") |
|
self.USE_ELEVENLABS = False |
|
else: self.USE_ELEVENLABS = False; print("ElevenLabs Disabled.") |
|
|
|
def set_pexels_api_key(self, api_key): |
|
if api_key: self.pexels_api_key = api_key; self.USE_PEXELS = True; print("Pexels Ready.") |
|
else: self.USE_PEXELS = False; print("Pexels Disabled.") |
|
|
|
def _get_text_dimensions(self, text_content, font_obj): |
|
if not text_content: return 0, self.font_size_pil |
|
try: |
|
if hasattr(font_obj, 'getbbox'): bbox = font_obj.getbbox(text_content); w = bbox[2]-bbox[0]; h = bbox[3]-bbox[1]; return w, h if h>0 else self.font_size_pil |
|
elif hasattr(font_obj, 'getsize'): w,h = font_obj.getsize(text_content); return w, h if h>0 else self.font_size_pil |
|
else: return int(len(text_content)*self.font_size_pil*0.6), int(self.font_size_pil*1.2 if self.font_size_pil*1.2 > 0 else self.font_size_pil) |
|
except: return int(len(text_content)*self.font_size_pil*0.6), int(self.font_size_pil*1.2) |
|
|
|
def _create_placeholder_image_content(self, text_description, filename, size=(1280, 720)): |
|
img = Image.new('RGB', size, color=(20,20,40)); draw = ImageDraw.Draw(img); padding = 25; max_w = size[0]-(2*padding); lines = [] |
|
if not text_description: text_description = "(Placeholder)" |
|
words = text_description.split(); current_line = "" |
|
for word in words: |
|
test_line = current_line + word + " "; |
|
if self._get_text_dimensions(test_line, self.font)[0] <= max_w: current_line = test_line |
|
else: |
|
if current_line: lines.append(current_line.strip()) |
|
current_line = word + " " |
|
if current_line: lines.append(current_line.strip()) |
|
if not lines: lines.append("(Text err)") |
|
_, line_h = self._get_text_dimensions("Ay", self.font); line_h = line_h if line_h>0 else self.font_size_pil+2 |
|
max_lines = min(len(lines), (size[1]-2*padding)//(line_h+2)) |
|
y = padding + (size[1]-2*padding - max_lines*(line_h+2))/2.0 |
|
for i in range(max_lines): |
|
line = lines[i]; line_w, _ = self._get_text_dimensions(line, self.font); x = (size[0]-line_w)/2.0 |
|
draw.text((x,y), line, font=self.font, fill=(200,200,180)); y += line_h+2 |
|
if i==6 and max_lines>7: draw.text((x,y), "...", font=self.font, fill=(200,200,180)); break |
|
fp = os.path.join(self.output_dir, filename); |
|
try: img.save(fp); return fp |
|
except Exception as e: print(f"Err placeholder save: {e}"); return None |
|
|
|
def _search_pexels_image(self, query, output_filename): |
|
if not self.USE_PEXELS or not self.pexels_api_key: return None |
|
headers = {"Authorization": self.pexels_api_key} |
|
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"} |
|
|
|
pexels_filename = output_filename.replace(".png", "_pexels.jpg") |
|
filepath = os.path.join(self.output_dir, pexels_filename) |
|
try: |
|
print(f"Searching Pexels for: '{query}' (max 3 words for relevance)") |
|
|
|
query_parts = query.split() |
|
effective_query = " ".join(query_parts[:5]) |
|
params["query"] = effective_query |
|
|
|
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=15) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data.get("photos"): |
|
photo_url = data["photos"][0]["src"]["large2x"] |
|
image_response = requests.get(photo_url, timeout=45) |
|
image_response.raise_for_status() |
|
img_data = Image.open(io.BytesIO(image_response.content)) |
|
if img_data.mode != 'RGB': img_data = img_data.convert('RGB') |
|
img_data.save(filepath) |
|
print(f"Pexels image saved: {filepath}") |
|
return filepath |
|
else: |
|
print(f"No photos found on Pexels for query: '{effective_query}'") |
|
except Exception as e: print(f"Pexels search/download error for '{query}': {e}") |
|
return None |
|
|
|
def generate_image_visual(self, image_prompt_text, scene_data_for_fallbacks, scene_identifier_filename): |
|
filepath = os.path.join(self.output_dir, scene_identifier_filename) |
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
max_retries = 2 |
|
for attempt in range(max_retries): |
|
try: |
|
print(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:120]}...") |
|
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0) |
|
response = client.images.generate( |
|
model=self.dalle_model, prompt=image_prompt_text, n=1, |
|
size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid" |
|
) |
|
image_url = response.data[0].url |
|
revised_prompt = getattr(response.data[0], 'revised_prompt', None) |
|
if revised_prompt: print(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...") |
|
|
|
image_response = requests.get(image_url, timeout=120) |
|
image_response.raise_for_status() |
|
img_data = Image.open(io.BytesIO(image_response.content)) |
|
if img_data.mode != 'RGB': img_data = img_data.convert('RGB') |
|
img_data.save(filepath); print(f"AI Image (DALL-E) saved: {filepath}"); return filepath |
|
except openai.RateLimitError as e: |
|
print(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s...") |
|
time.sleep(5*(attempt+1)); |
|
if attempt == max_retries -1: print("Max retries for RateLimitError."); break |
|
else: continue |
|
except openai.APIError as e: print(f"OpenAI API Error: {e}"); break |
|
except requests.exceptions.RequestException as e: print(f"Requests Error (DALL-E download): {e}"); break |
|
except Exception as e: print(f"Generic error (DALL-E gen): {e}"); break |
|
|
|
print("DALL-E generation failed. Trying Pexels fallback...") |
|
pexels_query = f"{scene_data_for_fallbacks.get('emotional_beat','')} {scene_data_for_fallbacks.get('setting_description','')} {scene_data_for_fallbacks.get('genre','')} {scene_data_for_fallbacks.get('mood','')}" |
|
pexels_path = self._search_pexels_image(pexels_query, scene_identifier_filename) |
|
if pexels_path: return pexels_path |
|
|
|
print("Pexels also failed/disabled. Using placeholder.") |
|
return self._create_placeholder_image_content( |
|
f"[AI/Pexels Failed] Original Prompt: {image_prompt_text[:100]}...", |
|
scene_identifier_filename, size=self.video_frame_size |
|
) |
|
else: |
|
return self._create_placeholder_image_content( |
|
image_prompt_text, scene_identifier_filename, size=self.video_frame_size |
|
) |
|
|
|
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"): |
|
if not self.USE_ELEVENLABS or not self.elevenlabs_api_key or not text_to_narrate: |
|
print("ElevenLabs not enabled, API key missing, or no text provided. Skipping audio generation.") |
|
return None |
|
|
|
audio_filepath = os.path.join(self.output_dir, output_filename) |
|
try: |
|
print(f"Generating ElevenLabs audio (Voice: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...") |
|
|
|
|
|
|
|
audio_data = elevenlabs_generate_audio( |
|
text=text_to_narrate, |
|
voice=self.elevenlabs_voice_id, |
|
model="eleven_multilingual_v2" |
|
) |
|
with open(audio_filepath, "wb") as f: |
|
f.write(audio_data) |
|
print(f"ElevenLabs audio saved: {audio_filepath}") |
|
return audio_filepath |
|
except ImportError: |
|
print("ElevenLabs library not installed. Cannot generate audio.") |
|
except Exception as e: |
|
print(f"Error generating ElevenLabs audio: {e}") |
|
return None |
|
|
|
def create_video_from_images(self, image_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24, duration_per_image=4): |
|
if not image_data_list: return None |
|
print(f"Creating video from {len(image_data_list)} image sets.") |
|
processed_clips = [] |
|
narration_audio_clip = None |
|
final_video_clip_obj = None |
|
|
|
for i, data in enumerate(image_data_list): |
|
img_path, scene_num, key_action = data.get('path'), data.get('scene_num', i+1), data.get('key_action', '') |
|
if not (img_path and os.path.exists(img_path)): |
|
print(f"Image not found: {img_path}. Skipping."); continue |
|
try: |
|
pil_img_orig = Image.open(img_path) |
|
if pil_img_orig.mode != 'RGB': pil_img_orig = pil_img_orig.convert('RGB') |
|
img_for_frame = pil_img_orig.copy() |
|
img_for_frame.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS) |
|
canvas = Image.new('RGB', self.video_frame_size, (0,0,0)) |
|
x_offset = (self.video_frame_size[0] - img_for_frame.width) // 2 |
|
y_offset = (self.video_frame_size[1] - img_for_frame.height) // 2 |
|
canvas.paste(img_for_frame, (x_offset, y_offset)) |
|
frame_np = np.array(canvas) |
|
img_clip = ImageClip(frame_np).set_duration(duration_per_image) |
|
img_clip = img_clip.fx(vfx.resize, lambda t: 1 + 0.1 * (t / duration_per_image)).set_position('center') |
|
if key_action: |
|
overlay_text = f"Scene {scene_num}\n{key_action}" |
|
txt_clip = TextClip(overlay_text, fontsize=self.video_overlay_font_size, |
|
color=self.video_overlay_font_color, font=self.video_overlay_font, |
|
bg_color='rgba(0,0,0,0.7)', method='caption', align='West', |
|
size=(self.video_frame_size[0]*0.85, None), kerning=-1, stroke_color='black', stroke_width=0.5 |
|
).set_duration(duration_per_image - 1.0).set_start(0.5).set_position(('center', 0.88), relative=True) |
|
final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size) |
|
else: final_scene_clip = img_clip |
|
processed_clips.append(final_scene_clip) |
|
except Exception as e: print(f"Error processing clip for {img_path}: {e}. Skipping.") |
|
|
|
if not processed_clips: print("No clips processed for video."); return None |
|
|
|
video_wo_audio = concatenate_videoclips(processed_clips, padding=-0.75, method="compose") |
|
if video_wo_audio.duration > 1.5: |
|
video_wo_audio = video_wo_audio.fx(vfx.fadein, 0.75).fx(vfx.fadeout, 0.75) |
|
|
|
final_video_clip_obj = video_wo_audio |
|
if overall_narration_path and os.path.exists(overall_narration_path): |
|
try: |
|
narration_audio_clip = AudioFileClip(overall_narration_path) |
|
final_video_clip_obj = final_video_clip_obj.set_audio(narration_audio_clip) |
|
if narration_audio_clip.duration < final_video_clip_obj.duration: |
|
final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration) |
|
elif narration_audio_clip.duration > final_video_clip_obj.duration: |
|
|
|
|
|
|
|
pass |
|
print("Overall narration added to video.") |
|
except Exception as e: |
|
print(f"Error adding overall narration: {e}. Proceeding without main narration.") |
|
|
|
output_path = os.path.join(self.output_dir, output_filename) |
|
try: |
|
final_video_clip_obj.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac', |
|
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'), |
|
remove_temp=True, threads=os.cpu_count() or 2, logger='bar') |
|
print(f"Video created: {output_path}"); return output_path |
|
except Exception as e: print(f"Error writing video file: {e}"); return None |
|
finally: |
|
for clip_item in processed_clips: |
|
if hasattr(clip_item, 'close'): clip_item.close() |
|
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close() |
|
if final_video_clip_obj and hasattr(final_video_clip_obj, 'close'): final_video_clip_obj.close() |