|
|
|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
|
|
try: |
|
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): |
|
Image.ANTIALIAS = Image.Resampling.LANCZOS |
|
elif hasattr(Image, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): |
|
Image.ANTIALIAS = Image.LANCZOS |
|
elif not hasattr(Image, 'ANTIALIAS'): |
|
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.") |
|
except Exception as e_mp: |
|
print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}") |
|
|
|
|
|
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip, |
|
CompositeVideoClip, AudioFileClip) |
|
import moviepy.video.fx.all as vfx |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
import time |
|
import random |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
ELEVENLABS_CLIENT_IMPORTED = False |
|
ElevenLabsAPIClient = None |
|
Voice = None |
|
VoiceSettings = None |
|
try: |
|
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient |
|
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings |
|
ElevenLabsAPIClient = ImportedElevenLabsClient |
|
Voice = ImportedVoice |
|
VoiceSettings = ImportedVoiceSettings |
|
ELEVENLABS_CLIENT_IMPORTED = True |
|
logger.info("ElevenLabs client components imported.") |
|
except Exception as e_eleven: |
|
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.") |
|
|
|
|
|
RUNWAYML_SDK_IMPORTED = False |
|
RunwayMLClient = None |
|
try: |
|
logger.info("RunwayML SDK import is a placeholder.") |
|
except ImportError: |
|
logger.warning("RunwayML SDK (placeholder) not found. RunwayML disabled.") |
|
except Exception as e_runway_sdk: |
|
logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML disabled.") |
|
|
|
|
|
class VisualEngine: |
|
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"): |
|
self.output_dir = output_dir |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
self.font_filename = "DejaVuSans-Bold.ttf" |
|
font_paths_to_try = [ |
|
self.font_filename, |
|
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", |
|
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", |
|
f"/System/Library/Fonts/Supplemental/Arial.ttf", |
|
f"C:/Windows/Fonts/arial.ttf", |
|
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf" |
|
] |
|
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None) |
|
self.font_size_pil = 20 |
|
self.video_overlay_font_size = 30 |
|
self.video_overlay_font_color = 'white' |
|
self.video_overlay_font = 'DejaVu-Sans-Bold' |
|
|
|
try: |
|
if self.font_path_pil: |
|
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) |
|
logger.info(f"Pillow font loaded: {self.font_path_pil}.") |
|
else: |
|
self.font = ImageFont.load_default() |
|
logger.warning("Using default Pillow font.") |
|
self.font_size_pil = 10 |
|
except IOError as e_font: |
|
logger.error(f"Pillow font loading IOError: {e_font}. Using default.") |
|
self.font = ImageFont.load_default() |
|
self.font_size_pil = 10 |
|
|
|
self.openai_api_key = None |
|
self.USE_AI_IMAGE_GENERATION = False |
|
self.dalle_model = "dall-e-3" |
|
self.image_size_dalle3 = "1792x1024" |
|
self.video_frame_size = (1280, 720) |
|
self.elevenlabs_api_key = None |
|
self.USE_ELEVENLABS = False |
|
self.elevenlabs_client = None |
|
self.elevenlabs_voice_id = default_elevenlabs_voice_id |
|
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: |
|
self.elevenlabs_voice_settings = VoiceSettings( |
|
stability=0.60, |
|
similarity_boost=0.80, |
|
style=0.15, |
|
use_speaker_boost=True |
|
) |
|
else: |
|
self.elevenlabs_voice_settings = None |
|
self.pexels_api_key = None |
|
self.USE_PEXELS = False |
|
self.runway_api_key = None |
|
self.USE_RUNWAYML = False |
|
self.runway_client = None |
|
logger.info("VisualEngine initialized.") |
|
|
|
def set_openai_api_key(self, k): |
|
self.openai_api_key = k |
|
self.USE_AI_IMAGE_GENERATION = bool(k) |
|
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}") |
|
|
|
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None): |
|
self.elevenlabs_api_key = api_key |
|
if voice_id_from_secret: |
|
self.elevenlabs_voice_id = voice_id_from_secret |
|
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: |
|
try: |
|
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key) |
|
self.USE_ELEVENLABS = bool(self.elevenlabs_client) |
|
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).") |
|
except Exception as e: |
|
logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True) |
|
self.USE_ELEVENLABS = False |
|
else: |
|
self.USE_ELEVENLABS = False |
|
logger.info("ElevenLabs Disabled (no key or SDK).") |
|
|
|
def set_pexels_api_key(self, k): |
|
self.pexels_api_key = k |
|
self.USE_PEXELS = bool(k) |
|
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}") |
|
|
|
def set_runway_api_key(self, k): |
|
self.runway_api_key = k |
|
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient: |
|
try: |
|
self.USE_RUNWAYML = True |
|
logger.info(f"RunwayML Client (Placeholder SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}") |
|
except Exception as e: |
|
logger.error(f"RunwayML client (Placeholder SDK) init error: {e}. Disabled.", exc_info=True) |
|
self.USE_RUNWAYML = False |
|
elif k: |
|
self.USE_RUNWAYML = True |
|
logger.info("RunwayML API Key set (direct API or placeholder).") |
|
else: |
|
self.USE_RUNWAYML = False |
|
logger.info("RunwayML Disabled (no API key).") |
|
|
|
def _get_text_dimensions(self, text_content, font_obj): |
|
default_line_height = getattr(font_obj, 'size', self.font_size_pil) |
|
if not text_content: |
|
return 0, default_line_height |
|
try: |
|
if hasattr(font_obj, 'getbbox'): |
|
bbox = font_obj.getbbox(text_content) |
|
width = bbox[2] - bbox[0] |
|
height = bbox[3] - bbox[1] |
|
return width, height if height > 0 else default_line_height |
|
elif hasattr(font_obj, 'getsize'): |
|
width, height = font_obj.getsize(text_content) |
|
return width, height if height > 0 else default_line_height |
|
else: |
|
return int(len(text_content) * default_line_height * 0.6), int(default_line_height * 1.2) |
|
except Exception as e: |
|
logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}") |
|
return int(len(text_content) * self.font_size_pil * 0.6), int(self.font_size_pil * 1.2) |
|
|
|
def _create_placeholder_image_content(self, text_description, filename, size=None): |
|
if size is None: |
|
size = self.video_frame_size |
|
img = Image.new('RGB', size, color=(20, 20, 40)) |
|
draw = ImageDraw.Draw(img) |
|
padding = 25 |
|
max_text_width = size[0] - (2 * padding) |
|
lines = [] |
|
if not text_description: |
|
text_description = "(Placeholder: No text description provided)" |
|
words = text_description.split() |
|
current_line = "" |
|
for word in words: |
|
test_line = current_line + word + " " |
|
line_width_test, _ = self._get_text_dimensions(test_line.strip(), self.font) |
|
if line_width_test <= max_text_width: |
|
current_line = test_line |
|
else: |
|
if current_line.strip(): |
|
lines.append(current_line.strip()) |
|
word_width, _ = self._get_text_dimensions(word, self.font) |
|
if word_width > max_text_width: |
|
avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10 |
|
chars_that_fit = int(max_text_width / avg_char_w) if avg_char_w > 0 else 10 |
|
if len(word) > chars_that_fit: |
|
lines.append(word[:chars_that_fit-3] + "...") |
|
else: |
|
lines.append(word) |
|
current_line = "" |
|
else: |
|
current_line = word + " " |
|
if current_line.strip(): |
|
lines.append(current_line.strip()) |
|
if not lines and text_description: |
|
avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10 |
|
chars_that_fit = int(max_text_width / avg_char_w) if avg_char_w > 0 else 10 |
|
if len(text_description) > chars_that_fit: |
|
lines.append(text_description[:chars_that_fit-3] + "...") |
|
else: |
|
lines.append(text_description) |
|
elif not lines: |
|
lines.append("(Placeholder Text Error)") |
|
_, single_line_height = self._get_text_dimensions("Ay", self.font) |
|
single_line_height = single_line_height if single_line_height > 0 else (self.font_size_pil + 2) |
|
line_spacing = 2 |
|
max_lines_to_display = min(len(lines), (size[1] - (2 * padding)) // (single_line_height + line_spacing)) if single_line_height > 0 else 1 |
|
if max_lines_to_display <= 0: |
|
max_lines_to_display = 1 |
|
total_text_block_height = max_lines_to_display * single_line_height + (max_lines_to_display - 1) * line_spacing |
|
y_text_start = padding + (size[1] - (2 * padding) - total_text_block_height) / 2.0 |
|
current_y = y_text_start |
|
for i in range(max_lines_to_display): |
|
line_content = lines[i] |
|
line_width_actual, _ = self._get_text_dimensions(line_content, self.font) |
|
x_text = max(padding, (size[0] - line_width_actual) / 2.0) |
|
draw.text((x_text, current_y), line_content, font=self.font, fill=(200, 200, 180)) |
|
current_y += single_line_height + line_spacing |
|
if i == 6 and max_lines_to_display > 7 and len(lines) > max_lines_to_display: |
|
ellipsis_width, _ = self._get_text_dimensions("...", self.font) |
|
x_ellipsis = max(padding, (size[0] - ellipsis_width) / 2.0) |
|
draw.text((x_ellipsis, current_y), "...", font=self.font, fill=(200, 200, 180)) |
|
break |
|
filepath = os.path.join(self.output_dir, filename) |
|
try: |
|
img.save(filepath) |
|
return filepath |
|
except Exception as e: |
|
logger.error(f"Error saving placeholder image {filepath}: {e}", exc_info=True) |
|
return None |
|
|
|
def _search_pexels_image(self, query, output_filename_base): |
|
if not self.USE_PEXELS or not self.pexels_api_key: |
|
return None |
|
headers = {"Authorization": self.pexels_api_key} |
|
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"} |
|
base_name, _ = os.path.splitext(output_filename_base) |
|
pexels_filename = base_name + f"_pexels_{random.randint(1000,9999)}.jpg" |
|
filepath = os.path.join(self.output_dir, pexels_filename) |
|
try: |
|
logger.info(f"Pexels search: '{query}'") |
|
effective_query = " ".join(query.split()[:5]) |
|
params["query"] = effective_query |
|
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data.get("photos") and len(data["photos"]) > 0: |
|
photo_details = data["photos"][0] |
|
photo_url = photo_details["src"]["large2x"] |
|
logger.info(f"Downloading Pexels image from: {photo_url}") |
|
image_response = requests.get(photo_url, timeout=60) |
|
image_response.raise_for_status() |
|
img_data = Image.open(io.BytesIO(image_response.content)) |
|
if img_data.mode != 'RGB': |
|
logger.debug(f"Pexels image mode is {img_data.mode}, converting to RGB.") |
|
img_data = img_data.convert('RGB') |
|
img_data.save(filepath) |
|
logger.info(f"Pexels image saved successfully: {filepath}") |
|
return filepath |
|
else: |
|
logger.info(f"No photos found on Pexels for query: '{effective_query}'") |
|
return None |
|
except requests.exceptions.RequestException as e_req: |
|
logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True) |
|
except json.JSONDecodeError as e_json: |
|
logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True) |
|
except Exception as e: |
|
logger.error(f"General Pexels error for query '{query}': {e}", exc_info=True) |
|
return None |
|
|
|
def _generate_video_clip_with_runwayml(self, pt, iip, sifnb, tds=5): |
|
if not self.USE_RUNWAYML or not self.runway_api_key: |
|
logger.warning("RunwayML disabled.") |
|
return None |
|
if not iip or not os.path.exists(iip): |
|
logger.error(f"Runway Gen-4 needs input image. Path invalid: {iip}") |
|
return None |
|
runway_dur = 10 if tds > 7 else 5 |
|
ovfn = sifnb.replace(".png", f"_runway_gen4_d{runway_dur}s.mp4") |
|
ovfp = os.path.join(self.output_dir, ovfn) |
|
logger.info(f"Runway Gen-4 (Placeholder) img: {os.path.basename(iip)}, motion: '{pt[:100]}...', dur: {runway_dur}s") |
|
logger.warning("Using PLACEHOLDER video for Runway Gen-4.") |
|
img_clip = None |
|
txt_c = None |
|
final_ph_clip = None |
|
try: |
|
img_clip = ImageClip(iip).set_duration(runway_dur) |
|
txt = f"Runway Gen-4 Placeholder\nInput: {os.path.basename(iip)}\nMotion: {pt[:50]}..." |
|
txt_c = TextClip( |
|
txt, |
|
fontsize=24, |
|
color='white', |
|
font=self.video_overlay_font, |
|
bg_color='rgba(0,0,0,0.5)', |
|
size=(self.video_frame_size[0] * 0.8, None), |
|
method='caption' |
|
).set_duration(runway_dur).set_position('center') |
|
final_ph_clip = CompositeVideoClip([img_clip, txt_c], size=img_clip.size) |
|
final_ph_clip.write_videofile(ovfp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2) |
|
logger.info(f"Runway Gen-4 placeholder video: {ovfp}") |
|
return ovfp |
|
except Exception as e: |
|
logger.error(f"Runway Gen-4 placeholder error: {e}", exc_info=True) |
|
return None |
|
finally: |
|
if img_clip and hasattr(img_clip, 'close'): |
|
img_clip.close() |
|
if txt_c and hasattr(txt_c, 'close'): |
|
txt_c.close() |
|
if final_ph_clip and hasattr(final_ph_clip, 'close'): |
|
final_ph_clip.close() |
|
|
|
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None): |
|
if size is None: |
|
size = self.video_frame_size |
|
filepath = os.path.join(self.output_dir, filename) |
|
txt_clip = None |
|
try: |
|
txt_clip = TextClip( |
|
text_description, |
|
fontsize=50, |
|
color='white', |
|
font=self.video_overlay_font, |
|
bg_color='black', |
|
size=size, |
|
method='caption' |
|
).set_duration(duration) |
|
txt_clip.write_videofile( |
|
filepath, |
|
fps=24, |
|
codec='libx264', |
|
preset='ultrafast', |
|
logger=None, |
|
threads=2 |
|
) |
|
logger.info(f"Generic placeholder video created successfully: {filepath}") |
|
return filepath |
|
except Exception as e: |
|
logger.error(f"Failed to create generic placeholder video {filepath}: {e}", exc_info=True) |
|
return None |
|
finally: |
|
if txt_clip and hasattr(txt_clip, 'close'): |
|
try: |
|
txt_clip.close() |
|
except Exception as e_close: |
|
logger.warning(f"Error closing TextClip in _create_placeholder_video_content: {e_close}") |
|
|
|
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video, |
|
scene_data, scene_identifier_filename_base, |
|
generate_as_video_clip=False, runway_target_duration=5): |
|
base_name = scene_identifier_filename_base |
|
asset_info = { |
|
'path': None, |
|
'type': 'none', |
|
'error': True, |
|
'prompt_used': image_generation_prompt_text, |
|
'error_message': 'Generation not attempted' |
|
} |
|
input_image_for_runway_path = None |
|
image_filename_for_base = base_name + "_base_image.png" |
|
temp_image_asset_info = { |
|
'error': True, |
|
'prompt_used': image_generation_prompt_text, |
|
'error_message': 'Base image generation not attempted' |
|
} |
|
|
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
max_r, att_n = 2, 0 |
|
for att_n in range(max_r): |
|
try: |
|
img_fp_dalle = os.path.join(self.output_dir, image_filename_for_base) |
|
logger.info(f"Attempt {att_n+1} DALL-E (base img): {image_generation_prompt_text[:100]}...") |
|
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0) |
|
r = cl.images.generate( |
|
model=self.dalle_model, |
|
prompt=image_generation_prompt_text, |
|
n=1, |
|
size=self.image_size_dalle3, |
|
quality="hd", |
|
response_format="url", |
|
style="vivid" |
|
) |
|
iu = r.data[0].url |
|
rp = getattr(r.data[0], 'revised_prompt', None) |
|
if rp: |
|
logger.info(f"DALL-E revised: {rp[:100]}...") |
|
ir = requests.get(iu, timeout=120) |
|
ir.raise_for_status() |
|
id_img = Image.open(io.BytesIO(ir.content)) |
|
if id_img.mode != 'RGB': |
|
id_img = id_img.convert('RGB') |
|
id_img.save(img_fp_dalle) |
|
logger.info(f"DALL-E base image: {img_fp_dalle}") |
|
input_image_for_runway_path = img_fp_dalle |
|
temp_image_asset_info = { |
|
'path': img_fp_dalle, |
|
'type': 'image', |
|
'error': False, |
|
'prompt_used': image_generation_prompt_text, |
|
'revised_prompt': rp |
|
} |
|
break |
|
except openai.RateLimitError as e: |
|
logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry...") |
|
time.sleep(5 * (att_n + 1)) |
|
temp_image_asset_info['error_message'] = str(e) |
|
except Exception as e: |
|
logger.error(f"DALL-E error: {e}", exc_info=True) |
|
temp_image_asset_info['error_message'] = str(e) |
|
break |
|
if temp_image_asset_info['error']: |
|
logger.warning(f"DALL-E failed after {att_n+1} attempts for base image.") |
|
|
|
if temp_image_asset_info['error'] and self.USE_PEXELS: |
|
pqt = scene_data.get('pexels_search_query_감독', |
|
f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}") |
|
pp = self._search_pexels_image(pqt, image_filename_for_base) |
|
if pp: |
|
input_image_for_runway_path = pp |
|
temp_image_asset_info = { |
|
'path': pp, |
|
'type': 'image', |
|
'error': False, |
|
'prompt_used': f"Pexels: {pqt}" |
|
} |
|
else: |
|
current_em = temp_image_asset_info.get('error_message', "") |
|
temp_image_asset_info['error_message'] = (current_em + " Pexels failed.").strip() |
|
|
|
if temp_image_asset_info['error']: |
|
logger.warning("Base image (DALL-E/Pexels) failed. Placeholder base image.") |
|
ppt = temp_image_asset_info.get('prompt_used', image_generation_prompt_text) |
|
php = self._create_placeholder_image_content(f"[Base Img Placeholder] {ppt[:100]}...", image_filename_for_base) |
|
if php: |
|
input_image_for_runway_path = php |
|
temp_image_asset_info = { |
|
'path': php, |
|
'type': 'image', |
|
'error': False, |
|
'prompt_used': ppt |
|
} |
|
else: |
|
current_em = temp_image_asset_info.get('error_message', "") |
|
temp_image_asset_info['error_message'] = (current_em + " Base placeholder failed.").strip() |
|
|
|
if generate_as_video_clip: |
|
if self.USE_RUNWAYML and input_image_for_runway_path: |
|
video_path = self._generate_video_clip_with_runwayml( |
|
motion_prompt_text_for_video, |
|
input_image_for_runway_path, |
|
base_name, |
|
runway_target_duration |
|
) |
|
if video_path and os.path.exists(video_path): |
|
return { |
|
'path': video_path, |
|
'type': 'video', |
|
'error': False, |
|
'prompt_used': motion_prompt_text_for_video, |
|
'base_image_path': input_image_for_runway_path |
|
} |
|
else: |
|
asset_info = temp_image_asset_info |
|
asset_info['error'] = True |
|
asset_info['error_message'] = "RunwayML video gen failed; using base image." |
|
asset_info['type'] = 'image' |
|
return asset_info |
|
elif not self.USE_RUNWAYML: |
|
asset_info = temp_image_asset_info |
|
asset_info['error_message'] = "RunwayML disabled; using base image." |
|
asset_info['type'] = 'image' |
|
return asset_info |
|
else: |
|
asset_info = temp_image_asset_info |
|
asset_info['error_message'] = (asset_info.get('error_message', "") + " Base image failed, Runway video not attempted.").strip() |
|
asset_info['type'] = 'image' |
|
return asset_info |
|
else: |
|
return temp_image_asset_info |
|
|
|
def generate_narration_audio(self, ttn, ofn="narration_overall.mp3"): |
|
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not ttn: |
|
logger.info("11L skip.") |
|
return None |
|
afp = os.path.join(self.output_dir, ofn) |
|
try: |
|
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {ttn[:70]}...") |
|
asm = None |
|
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'): |
|
asm = self.elevenlabs_client.text_to_speech.stream |
|
logger.info("Using 11L .text_to_speech.stream()") |
|
elif hasattr(self.elevenlabs_client, 'generate_stream'): |
|
asm = self.elevenlabs_client.generate_stream |
|
logger.info("Using 11L .generate_stream()") |
|
elif hasattr(self.elevenlabs_client, 'generate'): |
|
logger.info("Using 11L .generate()") |
|
vp = Voice(voice_id=str(self.elevenlabs_voice_id), |
|
settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id) |
|
ab = self.elevenlabs_client.generate(text=ttn, voice=vp, model="eleven_multilingual_v2") |
|
with open(afp, "wb") as f: |
|
f.write(ab) |
|
logger.info(f"11L audio (non-stream): {afp}") |
|
return afp |
|
else: |
|
logger.error("No 11L audio method.") |
|
return None |
|
|
|
if asm: |
|
vps = {"voice_id": str(self.elevenlabs_voice_id)} |
|
if self.elevenlabs_voice_settings: |
|
if hasattr(self.elevenlabs_voice_settings, 'model_dump'): |
|
vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump() |
|
elif hasattr(self.elevenlabs_voice_settings, 'dict'): |
|
vps["voice_settings"] = self.elevenlabs_voice_settings.dict() |
|
else: |
|
vps["voice_settings"] = self.elevenlabs_voice_settings |
|
adi = asm(text=ttn, model_id="eleven_multilingual_v2", **vps) |
|
with open(afp, "wb") as f: |
|
for c in adi: |
|
if c: |
|
f.write(c) |
|
logger.info(f"11L audio (stream): {afp}") |
|
return afp |
|
except Exception as e: |
|
logger.error(f"11L audio error: {e}", exc_info=True) |
|
return None |
|
|
|
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24): |
|
if not asset_data_list: |
|
logger.warning("No assets for animatic.") |
|
return None |
|
processed_clips = [] |
|
narration_clip = None |
|
final_clip = None |
|
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.") |
|
|
|
for i, asset_info in enumerate(asset_data_list): |
|
asset_path = asset_info.get('path') |
|
asset_type = asset_info.get('type') |
|
scene_dur = asset_info.get('duration', 4.5) |
|
scene_num = asset_info.get('scene_num', i + 1) |
|
key_action = asset_info.get('key_action', '') |
|
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s") |
|
|
|
if not (asset_path and os.path.exists(asset_path)): |
|
logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.") |
|
continue |
|
if scene_dur <= 0: |
|
logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.") |
|
continue |
|
|
|
current_scene_mvpy_clip = None |
|
try: |
|
if asset_type == 'image': |
|
pil_img = Image.open(asset_path) |
|
logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}") |
|
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy() |
|
thumb = img_rgba.copy() |
|
rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR |
|
thumb.thumbnail(self.video_frame_size, rf) |
|
cv_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0)) |
|
xo = (self.video_frame_size[0] - thumb.width) // 2 |
|
yo = (self.video_frame_size[1] - thumb.height) // 2 |
|
cv_rgba.paste(thumb, (xo, yo), thumb) |
|
final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0)) |
|
final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3]) |
|
dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png") |
|
final_rgb_pil.save(dbg_path) |
|
logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}") |
|
frame_np = np.array(final_rgb_pil, dtype=np.uint8) |
|
if not frame_np.flags['C_CONTIGUOUS']: |
|
frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8) |
|
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}") |
|
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3: |
|
logger.error(f"S{scene_num}: Invalid NumPy. Skip.") |
|
continue |
|
clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur) |
|
mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png") |
|
clip_base.save_frame(mvpy_dbg_path, t=0.1) |
|
logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}") |
|
clip_fx = clip_base |
|
try: |
|
es = random.uniform(1.03, 1.08) |
|
clip_fx = clip_base.fx( |
|
vfx.resize, |
|
lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1 |
|
).set_position('center') |
|
except Exception as e: |
|
logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False) |
|
current_scene_mvpy_clip = clip_fx |
|
elif asset_type == 'video': |
|
src_clip = None |
|
try: |
|
src_clip = VideoFileClip( |
|
asset_path, |
|
target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None, |
|
audio=False |
|
) |
|
tmp_clip = src_clip |
|
if src_clip.duration != scene_dur: |
|
if src_clip.duration > scene_dur: |
|
tmp_clip = src_clip.subclip(0, scene_dur) |
|
else: |
|
if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1: |
|
tmp_clip = src_clip.loop(duration=scene_dur) |
|
else: |
|
tmp_clip = src_clip.set_duration(src_clip.duration) |
|
logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).") |
|
current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur) |
|
if current_scene_mvpy_clip.size != list(self.video_frame_size): |
|
current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size) |
|
except Exception as e: |
|
logger.error(f"S{scene_num} Video load error '{asset_path}':{e}", exc_info=True) |
|
continue |
|
finally: |
|
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, 'close'): |
|
src_clip.close() |
|
else: |
|
logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.") |
|
continue |
|
|
|
if current_scene_mvpy_clip and key_action: |
|
try: |
|
to_dur = min(current_scene_mvpy_clip.duration - 0.5, current_scene_mvpy_clip.duration * 0.8) if current_scene_mvpy_clip.duration > 0.5 else current_scene_mvpy_clip.duration |
|
to_start = 0.25 |
|
txt_c = TextClip( |
|
f"Scene {scene_num}\n{key_action}", |
|
fontsize=self.video_overlay_font_size, |
|
color=self.video_overlay_font_color, |
|
font=self.video_overlay_font, |
|
bg_color='rgba(10,10,20,0.7)', |
|
method='caption', |
|
align='West', |
|
size=(self.video_frame_size[0] * 0.9, None), |
|
kerning=-1, |
|
stroke_color='black', |
|
stroke_width=1.5 |
|
).set_duration(to_dur).set_start(to_start).set_position(('center', 0.92), relative=True) |
|
current_scene_mvpy_clip = CompositeVideoClip( |
|
[current_scene_mvpy_clip, txt_c], |
|
size=self.video_frame_size, |
|
use_bgclip=True |
|
) |
|
except Exception as e: |
|
logger.error(f"S{scene_num} TextClip error:{e}. No text.", exc_info=True) |
|
|
|
if current_scene_mvpy_clip: |
|
processed_clips.append(current_scene_mvpy_clip) |
|
logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.") |
|
except Exception as e: |
|
logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}", exc_info=True) |
|
finally: |
|
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, 'close'): |
|
try: |
|
current_scene_mvpy_clip.close() |
|
except: |
|
pass |
|
|
|
if not processed_clips: |
|
logger.warning("No clips processed. Abort.") |
|
return None |
|
td = 0.75 |
|
try: |
|
logger.info(f"Concatenating {len(processed_clips)} clips.") |
|
if len(processed_clips) > 1: |
|
final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose") |
|
elif processed_clips: |
|
final_clip = processed_clips[0] |
|
if not final_clip: |
|
logger.error("Concatenation failed.") |
|
return None |
|
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s") |
|
if td > 0 and final_clip.duration > 0: |
|
if final_clip.duration > td * 2: |
|
final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td) |
|
else: |
|
final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0)) |
|
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0: |
|
try: |
|
narration_clip = AudioFileClip(overall_narration_path) |
|
final_clip = final_clip.set_audio(narration_clip) |
|
logger.info("Narration added.") |
|
except Exception as e: |
|
logger.error(f"Narration add error:{e}", exc_info=True) |
|
elif final_clip.duration <= 0: |
|
logger.warning("Video no duration. No audio.") |
|
if final_clip and final_clip.duration > 0: |
|
op = os.path.join(self.output_dir, output_filename) |
|
logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)") |
|
final_clip.write_videofile( |
|
op, |
|
fps=fps, |
|
codec='libx264', |
|
preset='medium', |
|
audio_codec='aac', |
|
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'), |
|
remove_temp=True, |
|
threads=os.cpu_count() or 2, |
|
logger='bar', |
|
bitrate="5000k", |
|
ffmpeg_params=["-pix_fmt", "yuv420p"] |
|
) |
|
logger.info(f"Video created:{op}") |
|
return op |
|
else: |
|
logger.error("Final clip invalid. No write.") |
|
return None |
|
except Exception as e: |
|
logger.error(f"Video write error:{e}", exc_info=True) |
|
return None |
|
finally: |
|
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.") |
|
clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else []) |
|
for clip_obj in clips_to_close: |
|
if clip_obj and hasattr(clip_obj, 'close'): |
|
try: |
|
clip_obj.close() |
|
except Exception as e_close: |
|
logger.warning(f"Ignoring error while closing a clip: {e_close}") |
|
|