Spaces:
Runtime error
Runtime error
File size: 28,728 Bytes
19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 7e82038 31be05a 19c2c87 7e82038 31be05a 7e82038 31be05a 7e82038 31be05a 19c2c87 7e82038 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 31be05a 19c2c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import os
import io
import json
import csv
import asyncio
import xml.etree.ElementTree as ET
from typing import Any, Dict, Optional, Tuple, Union, List
import httpx
import gradio as gr
import torch
from dotenv import load_dotenv
from loguru import logger
from huggingface_hub import login
from openai import OpenAI
from reportlab.pdfgen import canvas
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
MarianMTModel,
MarianTokenizer,
)
import pandas as pd
import altair as alt
import spacy
import spacy.cli
import PyPDF2
# Ensure spaCy model is downloaded
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading SpaCy 'en_core_web_sm' model...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Logging
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
# Load environment variables
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
# Basic checks
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
logger.error("Missing Hugging Face or OpenAI credentials.")
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
# API endpoints
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
# Log in to Hugging Face
login(HUGGINGFACE_TOKEN)
# Initialize OpenAI
client = OpenAI(api_key=OPENAI_API_KEY)
# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Model settings
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
try:
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Model load error: {e}")
raise
# Translation model settings
try:
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
translation_model = MarianMTModel.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Translation model load error: {e}")
raise
LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
"English to French": ("en", "fr"),
"French to English": ("fr", "en"),
}
###################################################
# UTILS #
###################################################
def safe_json_parse(text: str) -> Union[Dict, None]:
"""Safely parse JSON string into a Python dictionary."""
try:
return json.loads(text)
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return None
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
"""Parses PubMed XML data and returns a list of structured articles."""
root = ET.fromstring(xml_data)
articles = []
for article in root.findall(".//PubmedArticle"):
pmid = article.findtext(".//PMID")
title = article.findtext(".//ArticleTitle")
abstract = article.findtext(".//AbstractText")
journal = article.findtext(".//Journal/Title")
pub_date_elem = article.find(".//JournalIssue/PubDate")
pub_date = None
if pub_date_elem is not None:
year = pub_date_elem.findtext("Year")
month = pub_date_elem.findtext("Month")
day = pub_date_elem.findtext("Day")
if year and month and day:
pub_date = f"{year}-{month}-{day}"
else:
pub_date = year
articles.append({
"PMID": pmid,
"Title": title,
"Abstract": abstract,
"Journal": journal,
"PublicationDate": pub_date,
})
return articles
###################################################
# ASYNC FETCHES #
###################################################
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
params = {"query": nct_id, "format": "json"}
async with httpx.AsyncClient() as client_http:
try:
response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error fetching articles for {nct_id}: {e}")
return {"error": str(e)}
async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON."}
query_string = " AND ".join(f"{k}:{v}" for k, v in parsed_params.items())
params = {"query": query_string, "format": "json"}
async with httpx.AsyncClient() as client_http:
try:
response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error fetching articles: {e}")
return {"error": str(e)}
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON for PubMed."}
search_params = {
"db": "pubmed",
"retmode": "json",
"email": ENTREZ_EMAIL,
"retmax": parsed_params.get("retmax", "10"),
"term": parsed_params.get("term", ""),
}
async with httpx.AsyncClient() as client_http:
try:
search_response = await client_http.get(PUBMED_SEARCH_URL, params=search_params)
search_response.raise_for_status()
search_data = search_response.json()
id_list = search_data.get("esearchresult", {}).get("idlist", [])
if not id_list:
return {"result": ""}
fetch_params = {
"db": "pubmed",
"id": ",".join(id_list),
"retmode": "xml",
"email": ENTREZ_EMAIL,
}
fetch_response = await client_http.get(PUBMED_FETCH_URL, params=fetch_params)
fetch_response.raise_for_status()
return {"result": fetch_response.text}
except Exception as e:
logger.error(f"Error fetching PubMed articles: {e}")
return {"error": str(e)}
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON for Crossref."}
CROSSREF_API_URL = "https://api.crossref.org/works"
async with httpx.AsyncClient() as client_http:
try:
response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error fetching Crossref data: {e}")
return {"error": str(e)}
###################################################
# CORE LOGIC #
###################################################
def summarize_text(text: str) -> str:
"""Summarize text using OpenAI."""
if not text.strip():
return "No text provided for summarization."
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"Summarize the following clinical data:\n{text}"}],
max_tokens=200,
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Summarization Error: {e}")
return "Summarization failed."
def predict_outcome(text: str) -> Union[Dict[str, float], str]:
"""Predict outcomes (classification) using a fine-tuned model."""
if not text.strip():
return "No text provided for prediction."
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
return {f"Label {i+1}": float(prob.item()) for i, prob in enumerate(probabilities)}
except Exception as e:
logger.error(f"Prediction Error: {e}")
return "Prediction failed."
def generate_report(text: str, filename: str = "clinical_report.pdf") -> Optional[str]:
"""Generate a PDF report from the given text."""
try:
if not text.strip():
logger.warning("No text provided for the report.")
c = canvas.Canvas(filename)
c.drawString(100, 750, "Clinical Research Report")
lines = text.split("\n")
y = 730
for line in lines:
if y < 50:
c.showPage()
y = 750
c.drawString(100, y, line)
y -= 15
c.save()
logger.info(f"Report generated: {filename}")
return filename
except Exception as e:
logger.error(f"Report Generation Error: {e}")
return None
def visualize_predictions(predictions: Dict[str, float]) -> Optional[alt.Chart]:
"""Visualize model prediction probabilities using Altair."""
try:
data = pd.DataFrame(list(predictions.items()), columns=["Label", "Probability"])
chart = (
alt.Chart(data)
.mark_bar()
.encode(
x=alt.X("Label:N", sort=None),
y="Probability:Q",
tooltip=["Label", "Probability"],
)
.properties(title="Prediction Probabilities", width=500, height=300)
)
return chart
except Exception as e:
logger.error(f"Visualization Error: {e}")
return None
def translate_text(text: str, translation_option: str) -> str:
"""Translate text between English and French."""
if not text.strip():
return "No text provided for translation."
try:
if translation_option not in LANGUAGE_MAP:
return "Unsupported translation option."
inputs = translation_tokenizer(text, return_tensors="pt", padding=True).to(device)
translated_tokens = translation_model.generate(**inputs)
return translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Translation Error: {e}")
return "Translation failed."
def perform_named_entity_recognition(text: str) -> str:
"""Perform Named Entity Recognition (NER) using spaCy."""
if not text.strip():
return "No text provided for NER."
try:
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
if not entities:
return "No named entities found."
return "\n".join(f"{ent_text} -> {ent_label}" for ent_text, ent_label in entities)
except Exception as e:
logger.error(f"NER Error: {e}")
return "Named Entity Recognition failed."
###################################################
# ENHANCED EDA #
###################################################
def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Optional[alt.Chart]]:
"""
Show columns, shape, numeric summary, correlation heatmap, and distribution histograms.
Returns (text_summary, correlation_chart, distribution_chart).
"""
try:
columns_info = f"Columns: {list(df.columns)}"
shape_info = f"Shape: {df.shape[0]} rows x {df.shape[1]} columns"
with pd.option_context("display.max_colwidth", 200, "display.max_rows", None):
describe_info = df.describe(include="all").to_string()
summary_text = (
f"--- Enhanced EDA Summary ---\n"
f"{columns_info}\n{shape_info}\n\n"
f"Summary Statistics:\n{describe_info}\n"
)
numeric_cols = df.select_dtypes(include="number")
corr_chart = None
if numeric_cols.shape[1] >= 2:
corr = numeric_cols.corr()
corr_melted = corr.reset_index().melt(id_vars="index")
corr_melted.columns = ["Feature1", "Feature2", "Correlation"]
corr_chart = (
alt.Chart(corr_melted)
.mark_rect()
.encode(
x="Feature1:O",
y="Feature2:O",
color="Correlation:Q",
tooltip=["Feature1", "Feature2", "Correlation"]
)
.properties(width=400, height=400, title="Correlation Heatmap")
)
distribution_chart = None
if numeric_cols.shape[1] >= 1:
df_long = numeric_cols.melt(var_name='Column', value_name='Value')
distribution_chart = (
alt.Chart(df_long)
.mark_bar()
.encode(
alt.X("Value:Q", bin=alt.Bin(maxbins=30)),
alt.Y('count()'),
alt.Facet('Column:N', columns=2),
tooltip=["Value"]
)
.properties(
title='Distribution of Numeric Columns',
width=300,
height=200
)
.interactive()
)
return summary_text, corr_chart, distribution_chart
except Exception as e:
logger.error(f"Enhanced EDA Error: {e}")
return f"Enhanced EDA failed: {e}", None, None
###################################################
# FILE PARSING #
###################################################
def parse_text_file(uploaded_file: gr.File) -> str:
"""Reads a .txt file as UTF-8 text."""
return uploaded_file.read().decode("utf-8")
def parse_csv_file(uploaded_file: gr.File) -> pd.DataFrame:
"""
Reads CSV content with possible BOM issues
by trying 'utf-8' and 'utf-8-sig'.
"""
content = uploaded_file.read().decode("utf-8", errors="replace")
# We can attempt to parse with multiple encodings if needed:
# For simplicity, let's just do a fallback approach:
try:
from io import StringIO
df = pd.read_csv(StringIO(content))
return df
except Exception as e:
raise ValueError(f"CSV parse error: {e}")
def parse_excel_file(uploaded_file: gr.File) -> pd.DataFrame:
"""
Parse an Excel file into a pandas DataFrame.
1) If the path exists, read directly from path.
2) Else read from uploaded_file.file (in-memory) in binary mode.
"""
import pandas as pd
import os
excel_path = uploaded_file.name
# Try local path first
if os.path.isfile(excel_path):
return pd.read_excel(excel_path, engine="openpyxl")
# Fall back to reading raw bytes from uploaded_file.file
try:
excel_bytes = uploaded_file.file.read()
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
except Exception as e:
raise ValueError(f"Excel parse error: {e}")
def parse_pdf_file(uploaded_file: gr.File) -> str:
"""Reads a PDF file with PyPDF2, extracting text from each page."""
try:
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text_content = []
for page in pdf_reader.pages:
text_content.append(page.extract_text())
return "\n".join(text_content)
except Exception as e:
logger.error(f"PDF parse error: {e}")
return f"Error reading PDF file: {e}"
###################################################
# GRADIO INTERFACE #
###################################################
with gr.Blocks() as demo:
gr.Markdown("# ✨ Advanced Clinical Research Assistant with Enhanced EDA ✨")
gr.Markdown("""
Welcome to the **Enhanced** AI-Powered Clinical Assistant!
- **Summarize** large blocks of clinical text.
- **Predict** outcomes with a fine-tuned model.
- **Translate** text (English ↔ French).
- **Perform Named Entity Recognition** (spaCy).
- **Fetch** from PubMed, Crossref, Europe PMC.
- **Generate** professional PDF reports.
- **Perform Enhanced EDA** on CSV/Excel data (correlation heatmaps + distribution plots).
""")
# Inputs
with gr.Row():
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or query...")
# We'll rely on .name and .file for the path and file handle
file_input = gr.File(
label="Upload File (txt/csv/xls/xlsx/pdf)",
file_types=[".txt", ".csv", ".xls", ".xlsx", ".pdf"]
)
action = gr.Radio(
[
"Summarize",
"Predict Outcome",
"Generate Report",
"Translate",
"Perform Named Entity Recognition",
"Perform Enhanced EDA",
"Fetch Clinical Studies",
"Fetch PubMed Articles (Legacy)",
"Fetch PubMed by Query",
"Fetch Crossref by Query",
],
label="Select an Action",
)
translation_option = gr.Dropdown(
choices=list(LANGUAGE_MAP.keys()),
label="Translation Option",
value="English to French"
)
query_params_input = gr.Textbox(
label="Query Parameters (JSON Format)",
placeholder='{"term": "cancer", "retmax": "5"}'
)
nct_id_input = gr.Textbox(label="NCT ID for Article Search")
report_filename_input = gr.Textbox(
label="Report Filename",
placeholder="clinical_report.pdf",
value="clinical_report.pdf"
)
export_format = gr.Dropdown(["None", "CSV", "JSON"], label="Export Format")
# Outputs
output_text = gr.Textbox(label="Output", lines=10)
with gr.Row():
output_chart = gr.Plot(label="Visualization 1")
output_chart2 = gr.Plot(label="Visualization 2")
output_file = gr.File(label="Generated File")
submit_button = gr.Button("Submit")
################################################################
# MAIN HANDLER FUNCTION #
################################################################
async def handle_action(
action: str,
text: str,
file_up: gr.File,
translation_opt: str,
query_params: str,
nct_id: str,
report_filename: str,
export_format: str
) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
# 1) Start with user-provided text
combined_text = text.strip()
# 2) If user uploaded a file, parse it based on extension
if file_up is not None:
file_ext = os.path.splitext(file_up.name)[1].lower()
if file_ext == ".txt":
file_text = parse_text_file(file_up)
combined_text = (combined_text + "\n" + file_text).strip()
elif file_ext == ".csv":
# If user chose EDA, we'll parse into DataFrame below
# If we just want to combine text for Summarize, etc., do so:
pass
elif file_ext in [".xls", ".xlsx"]:
# We'll handle Excel parsing in the EDA step if needed
pass
elif file_ext == ".pdf":
file_text = parse_pdf_file(file_up)
combined_text = (combined_text + "\n" + file_text).strip()
### ACTIONS ###
if action == "Summarize":
if file_up and file_up.name.endswith(".csv"):
# Merge CSV text into combined_text
# in case user wants summarization of the CSV's raw text
try:
df_csv = parse_csv_file(file_up)
# Turn CSV into text
csv_as_text = df_csv.to_csv(index=False)
combined_text = (combined_text + "\n" + csv_as_text).strip()
except Exception as e:
return f"CSV parse error for Summarize: {e}", None, None, None
# Summarize the combined text
return summarize_text(combined_text), None, None, None
elif action == "Predict Outcome":
return _action_predict_outcome(combined_text, file_up)
elif action == "Generate Report":
# Add CSV content if needed
if file_up and file_up.name.endswith(".csv"):
try:
df_csv = parse_csv_file(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
logger.error(f"Error reading CSV for report: {e}")
file_path = generate_report(combined_text, filename=report_filename)
msg = f"Report generated: {file_path}" if file_path else "Report generation failed."
return msg, None, None, file_path
elif action == "Translate":
# Optionally read CSV or PDF text?
if file_up and file_up.name.endswith(".csv"):
try:
df_csv = parse_csv_file(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error for Translate: {e}", None, None, None
translated = translate_text(combined_text, translation_opt)
return translated, None, None, None
elif action == "Perform Named Entity Recognition":
# Merge CSV as text if user wants NER on CSV
if file_up and file_up.name.endswith(".csv"):
try:
df_csv = parse_csv_file(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error for NER: {e}", None, None, None
ner_result = perform_named_entity_recognition(combined_text)
return ner_result, None, None, None
elif action == "Perform Enhanced EDA":
return await _action_eda(combined_text, file_up, text)
elif action == "Fetch Clinical Studies":
if nct_id:
result = await fetch_articles_by_nct_id(nct_id)
elif query_params:
result = await fetch_articles_by_query(query_params)
else:
return "Provide either an NCT ID or valid query parameters.", None, None, None
articles = result.get("resultList", {}).get("result", [])
if not articles:
return "No articles found.", None, None, None
formatted_results = "\n\n".join(
f"Title: {a.get('title')}\nJournal: {a.get('journalTitle')} ({a.get('pubYear')})"
for a in articles
)
return formatted_results, None, None, None
elif action in ["Fetch PubMed Articles (Legacy)", "Fetch PubMed by Query"]:
pubmed_result = await fetch_pubmed_by_query(query_params)
xml_data = pubmed_result.get("result")
if xml_data:
articles = parse_pubmed_xml(xml_data)
if not articles:
return "No articles found.", None, None, None
formatted = "\n\n".join(
f"{a['Title']} - {a['Journal']} ({a['PublicationDate']})"
for a in articles if a['Title']
)
return formatted if formatted else "No articles found.", None, None, None
return "No articles found or error fetching data.", None, None, None
elif action == "Fetch Crossref by Query":
crossref_result = await fetch_crossref_by_query(query_params)
items = crossref_result.get("message", {}).get("items", [])
if not items:
return "No results found.", None, None, None
formatted = "\n\n".join(
f"Title: {item.get('title', ['No title'])[0]}, DOI: {item.get('DOI')}"
for item in items
)
return formatted, None, None, None
return "Invalid action.", None, None, None
def _action_predict_outcome(combined_text: str, file_up: gr.File) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
# If CSV is uploaded, we can merge it into text or do separate logic
if file_up and file_up.name.endswith(".csv"):
try:
df_csv = parse_csv_file(file_up)
# Optionally, merge CSV content into the text to be classified
combined_text_local = combined_text + "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error for Predict Outcome: {e}", None, None, None
else:
combined_text_local = combined_text
predictions = predict_outcome(combined_text_local)
if isinstance(predictions, dict):
chart = visualize_predictions(predictions)
return json.dumps(predictions, indent=2), chart, None, None
return predictions, None, None, None
async def _action_eda(combined_text: str, file_up: Optional[gr.File], raw_text: str) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
"""
Perform Enhanced EDA on a CSV or Excel file if uploaded.
If .csv is present, parse as CSV; if .xls/.xlsx is present, parse as Excel.
"""
# Make sure we either have a file or some data in the text
if not file_up and not raw_text.strip():
return "No data provided for EDA.", None, None, None
if file_up:
file_ext = os.path.splitext(file_up.name)[1].lower()
if file_ext == ".csv":
try:
df_csv = parse_csv_file(file_up)
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
return eda_summary, corr_chart, dist_chart, None
except Exception as e:
return f"CSV EDA failed: {e}", None, None, None
elif file_ext in [".xls", ".xlsx"]:
try:
df_excel = parse_excel_file(file_up)
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_excel)
return eda_summary, corr_chart, dist_chart, None
except Exception as e:
return f"Excel EDA failed: {e}", None, None, None
else:
# EDA not supported for PDF or .txt in this example
return "No valid CSV/Excel data found for EDA.", None, None, None
else:
# If no file, maybe the user pasted CSV into the text box
if "," in raw_text:
# Attempt to parse text as CSV
try:
from io import StringIO
df_csv = pd.read_csv(StringIO(raw_text))
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
return eda_summary, corr_chart, dist_chart, None
except Exception as e:
return f"EDA parse error for pasted CSV: {e}", None, None, None
return "No valid CSV/Excel data found for EDA.", None, None, None
submit_button.click(
handle_action,
inputs=[
action,
text_input,
file_input,
translation_option,
query_params_input,
nct_id_input,
report_filename_input,
export_format,
],
outputs=[
output_text,
output_chart,
output_chart2,
output_file,
],
)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|