File size: 28,728 Bytes
19c2c87
31be05a
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
 
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
 
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
 
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
 
19c2c87
 
31be05a
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
19c2c87
31be05a
 
 
19c2c87
31be05a
 
 
 
 
 
 
 
19c2c87
31be05a
 
 
19c2c87
31be05a
19c2c87
 
 
7e82038
31be05a
 
19c2c87
7e82038
31be05a
7e82038
31be05a
 
 
 
7e82038
31be05a
19c2c87
7e82038
 
19c2c87
31be05a
19c2c87
31be05a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
 
19c2c87
 
 
 
 
 
 
 
 
 
 
31be05a
 
19c2c87
31be05a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c2c87
31be05a
19c2c87
31be05a
 
 
 
 
 
 
 
 
 
 
 
19c2c87
 
 
31be05a
19c2c87
 
31be05a
 
 
 
 
 
 
19c2c87
 
 
 
 
31be05a
 
 
 
 
 
 
 
 
19c2c87
 
31be05a
 
 
 
 
 
 
19c2c87
 
 
 
31be05a
19c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c2c87
31be05a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c2c87
 
 
 
 
 
 
 
 
 
 
 
31be05a
 
 
 
 
 
19c2c87
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import os
import io
import json
import csv
import asyncio
import xml.etree.ElementTree as ET
from typing import Any, Dict, Optional, Tuple, Union, List

import httpx
import gradio as gr
import torch
from dotenv import load_dotenv
from loguru import logger
from huggingface_hub import login
from openai import OpenAI
from reportlab.pdfgen import canvas
from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    MarianMTModel,
    MarianTokenizer,
)
import pandas as pd
import altair as alt
import spacy
import spacy.cli
import PyPDF2

# Ensure spaCy model is downloaded
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    logger.info("Downloading SpaCy 'en_core_web_sm' model...")
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

# Logging
logger.add("error_logs.log", rotation="1 MB", level="ERROR")

# Load environment variables
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")

# Basic checks
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
    logger.error("Missing Hugging Face or OpenAI credentials.")
    raise ValueError("Missing credentials for Hugging Face or OpenAI.")

# API endpoints
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"

# Log in to Hugging Face
login(HUGGINGFACE_TOKEN)

# Initialize OpenAI
client = OpenAI(api_key=OPENAI_API_KEY)

# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")

# Model settings
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
try:
    model = AutoModelForSequenceClassification.from_pretrained(
        MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
    ).to(device)
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
    )
except Exception as e:
    logger.error(f"Model load error: {e}")
    raise

# Translation model settings
try:
    translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
    translation_model = MarianMTModel.from_pretrained(
        translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
    ).to(device)
    translation_tokenizer = MarianTokenizer.from_pretrained(
        translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
    )
except Exception as e:
    logger.error(f"Translation model load error: {e}")
    raise

LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
    "English to French": ("en", "fr"),
    "French to English": ("fr", "en"),
}

###################################################
#                     UTILS                       #
###################################################

def safe_json_parse(text: str) -> Union[Dict, None]:
    """Safely parse JSON string into a Python dictionary."""
    try:
        return json.loads(text)
    except json.JSONDecodeError as e:
        logger.error(f"JSON parsing error: {e}")
        return None

def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
    """Parses PubMed XML data and returns a list of structured articles."""
    root = ET.fromstring(xml_data)
    articles = []
    for article in root.findall(".//PubmedArticle"):
        pmid = article.findtext(".//PMID")
        title = article.findtext(".//ArticleTitle")
        abstract = article.findtext(".//AbstractText")
        journal = article.findtext(".//Journal/Title")
        pub_date_elem = article.find(".//JournalIssue/PubDate")
        pub_date = None
        if pub_date_elem is not None:
            year = pub_date_elem.findtext("Year")
            month = pub_date_elem.findtext("Month")
            day = pub_date_elem.findtext("Day")
            if year and month and day:
                pub_date = f"{year}-{month}-{day}"
            else:
                pub_date = year
        articles.append({
            "PMID": pmid,
            "Title": title,
            "Abstract": abstract,
            "Journal": journal,
            "PublicationDate": pub_date,
        })
    return articles

###################################################
#                ASYNC FETCHES                    #
###################################################

async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
    params = {"query": nct_id, "format": "json"}
    async with httpx.AsyncClient() as client_http:
        try:
            response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error fetching articles for {nct_id}: {e}")
            return {"error": str(e)}

async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
    parsed_params = safe_json_parse(query_params)
    if not parsed_params or not isinstance(parsed_params, dict):
        return {"error": "Invalid JSON."}
    query_string = " AND ".join(f"{k}:{v}" for k, v in parsed_params.items())
    params = {"query": query_string, "format": "json"}
    async with httpx.AsyncClient() as client_http:
        try:
            response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error fetching articles: {e}")
            return {"error": str(e)}

async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
    parsed_params = safe_json_parse(query_params)
    if not parsed_params or not isinstance(parsed_params, dict):
        return {"error": "Invalid JSON for PubMed."}

    search_params = {
        "db": "pubmed",
        "retmode": "json",
        "email": ENTREZ_EMAIL,
        "retmax": parsed_params.get("retmax", "10"),
        "term": parsed_params.get("term", ""),
    }

    async with httpx.AsyncClient() as client_http:
        try:
            search_response = await client_http.get(PUBMED_SEARCH_URL, params=search_params)
            search_response.raise_for_status()
            search_data = search_response.json()
            id_list = search_data.get("esearchresult", {}).get("idlist", [])
            if not id_list:
                return {"result": ""}

            fetch_params = {
                "db": "pubmed",
                "id": ",".join(id_list),
                "retmode": "xml",
                "email": ENTREZ_EMAIL,
            }
            fetch_response = await client_http.get(PUBMED_FETCH_URL, params=fetch_params)
            fetch_response.raise_for_status()
            return {"result": fetch_response.text}
        except Exception as e:
            logger.error(f"Error fetching PubMed articles: {e}")
            return {"error": str(e)}

async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
    parsed_params = safe_json_parse(query_params)
    if not parsed_params or not isinstance(parsed_params, dict):
        return {"error": "Invalid JSON for Crossref."}
    CROSSREF_API_URL = "https://api.crossref.org/works"
    async with httpx.AsyncClient() as client_http:
        try:
            response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error fetching Crossref data: {e}")
            return {"error": str(e)}

###################################################
#                   CORE LOGIC                    #
###################################################

def summarize_text(text: str) -> str:
    """Summarize text using OpenAI."""
    if not text.strip():
        return "No text provided for summarization."
    try:
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": f"Summarize the following clinical data:\n{text}"}],
            max_tokens=200,
            temperature=0.7,
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Summarization Error: {e}")
        return "Summarization failed."

def predict_outcome(text: str) -> Union[Dict[str, float], str]:
    """Predict outcomes (classification) using a fine-tuned model."""
    if not text.strip():
        return "No text provided for prediction."
    try:
        inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model(**inputs)
        probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
        return {f"Label {i+1}": float(prob.item()) for i, prob in enumerate(probabilities)}
    except Exception as e:
        logger.error(f"Prediction Error: {e}")
        return "Prediction failed."

def generate_report(text: str, filename: str = "clinical_report.pdf") -> Optional[str]:
    """Generate a PDF report from the given text."""
    try:
        if not text.strip():
            logger.warning("No text provided for the report.")
        c = canvas.Canvas(filename)
        c.drawString(100, 750, "Clinical Research Report")
        lines = text.split("\n")
        y = 730
        for line in lines:
            if y < 50:
                c.showPage()
                y = 750
            c.drawString(100, y, line)
            y -= 15
        c.save()
        logger.info(f"Report generated: {filename}")
        return filename
    except Exception as e:
        logger.error(f"Report Generation Error: {e}")
        return None

def visualize_predictions(predictions: Dict[str, float]) -> Optional[alt.Chart]:
    """Visualize model prediction probabilities using Altair."""
    try:
        data = pd.DataFrame(list(predictions.items()), columns=["Label", "Probability"])
        chart = (
            alt.Chart(data)
            .mark_bar()
            .encode(
                x=alt.X("Label:N", sort=None),
                y="Probability:Q",
                tooltip=["Label", "Probability"],
            )
            .properties(title="Prediction Probabilities", width=500, height=300)
        )
        return chart
    except Exception as e:
        logger.error(f"Visualization Error: {e}")
        return None

def translate_text(text: str, translation_option: str) -> str:
    """Translate text between English and French."""
    if not text.strip():
        return "No text provided for translation."
    try:
        if translation_option not in LANGUAGE_MAP:
            return "Unsupported translation option."
        inputs = translation_tokenizer(text, return_tensors="pt", padding=True).to(device)
        translated_tokens = translation_model.generate(**inputs)
        return translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
    except Exception as e:
        logger.error(f"Translation Error: {e}")
        return "Translation failed."

def perform_named_entity_recognition(text: str) -> str:
    """Perform Named Entity Recognition (NER) using spaCy."""
    if not text.strip():
        return "No text provided for NER."
    try:
        doc = nlp(text)
        entities = [(ent.text, ent.label_) for ent in doc.ents]
        if not entities:
            return "No named entities found."
        return "\n".join(f"{ent_text} -> {ent_label}" for ent_text, ent_label in entities)
    except Exception as e:
        logger.error(f"NER Error: {e}")
        return "Named Entity Recognition failed."

###################################################
#                ENHANCED EDA                     #
###################################################

def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Optional[alt.Chart]]:
    """
    Show columns, shape, numeric summary, correlation heatmap, and distribution histograms.
    Returns (text_summary, correlation_chart, distribution_chart).
    """
    try:
        columns_info = f"Columns: {list(df.columns)}"
        shape_info = f"Shape: {df.shape[0]} rows x {df.shape[1]} columns"

        with pd.option_context("display.max_colwidth", 200, "display.max_rows", None):
            describe_info = df.describe(include="all").to_string()

        summary_text = (
            f"--- Enhanced EDA Summary ---\n"
            f"{columns_info}\n{shape_info}\n\n"
            f"Summary Statistics:\n{describe_info}\n"
        )

        numeric_cols = df.select_dtypes(include="number")
        corr_chart = None
        if numeric_cols.shape[1] >= 2:
            corr = numeric_cols.corr()
            corr_melted = corr.reset_index().melt(id_vars="index")
            corr_melted.columns = ["Feature1", "Feature2", "Correlation"]
            corr_chart = (
                alt.Chart(corr_melted)
                .mark_rect()
                .encode(
                    x="Feature1:O",
                    y="Feature2:O",
                    color="Correlation:Q",
                    tooltip=["Feature1", "Feature2", "Correlation"]
                )
                .properties(width=400, height=400, title="Correlation Heatmap")
            )

        distribution_chart = None
        if numeric_cols.shape[1] >= 1:
            df_long = numeric_cols.melt(var_name='Column', value_name='Value')
            distribution_chart = (
                alt.Chart(df_long)
                .mark_bar()
                .encode(
                    alt.X("Value:Q", bin=alt.Bin(maxbins=30)),
                    alt.Y('count()'),
                    alt.Facet('Column:N', columns=2),
                    tooltip=["Value"]
                )
                .properties(
                    title='Distribution of Numeric Columns',
                    width=300,
                    height=200
                )
                .interactive()
            )

        return summary_text, corr_chart, distribution_chart

    except Exception as e:
        logger.error(f"Enhanced EDA Error: {e}")
        return f"Enhanced EDA failed: {e}", None, None

###################################################
#                FILE PARSING                     #
###################################################

def parse_text_file(uploaded_file: gr.File) -> str:
    """Reads a .txt file as UTF-8 text."""
    return uploaded_file.read().decode("utf-8")

def parse_csv_file(uploaded_file: gr.File) -> pd.DataFrame:
    """
    Reads CSV content with possible BOM issues 
    by trying 'utf-8' and 'utf-8-sig'.
    """
    content = uploaded_file.read().decode("utf-8", errors="replace")
    # We can attempt to parse with multiple encodings if needed:
    # For simplicity, let's just do a fallback approach:
    try:
        from io import StringIO
        df = pd.read_csv(StringIO(content))
        return df
    except Exception as e:
        raise ValueError(f"CSV parse error: {e}")

def parse_excel_file(uploaded_file: gr.File) -> pd.DataFrame:
    """
    Parse an Excel file into a pandas DataFrame.
    1) If the path exists, read directly from path.
    2) Else read from uploaded_file.file (in-memory) in binary mode.
    """
    import pandas as pd
    import os

    excel_path = uploaded_file.name
    # Try local path first
    if os.path.isfile(excel_path):
        return pd.read_excel(excel_path, engine="openpyxl")

    # Fall back to reading raw bytes from uploaded_file.file
    try:
        excel_bytes = uploaded_file.file.read()
        return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
    except Exception as e:
        raise ValueError(f"Excel parse error: {e}")

def parse_pdf_file(uploaded_file: gr.File) -> str:
    """Reads a PDF file with PyPDF2, extracting text from each page."""
    try:
        pdf_reader = PyPDF2.PdfReader(uploaded_file)
        text_content = []
        for page in pdf_reader.pages:
            text_content.append(page.extract_text())
        return "\n".join(text_content)
    except Exception as e:
        logger.error(f"PDF parse error: {e}")
        return f"Error reading PDF file: {e}"

###################################################
#             GRADIO INTERFACE                    #
###################################################

with gr.Blocks() as demo:
    gr.Markdown("# ✨ Advanced Clinical Research Assistant with Enhanced EDA ✨")
    gr.Markdown("""
Welcome to the **Enhanced** AI-Powered Clinical Assistant!  
- **Summarize** large blocks of clinical text.  
- **Predict** outcomes with a fine-tuned model.  
- **Translate** text (English ↔ French).  
- **Perform Named Entity Recognition** (spaCy).  
- **Fetch** from PubMed, Crossref, Europe PMC.  
- **Generate** professional PDF reports.  
- **Perform Enhanced EDA** on CSV/Excel data (correlation heatmaps + distribution plots).  
""")
    
    # Inputs
    with gr.Row():
        text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or query...")
        # We'll rely on .name and .file for the path and file handle
        file_input = gr.File(
            label="Upload File (txt/csv/xls/xlsx/pdf)",
            file_types=[".txt", ".csv", ".xls", ".xlsx", ".pdf"]
        )
    
    action = gr.Radio(
        [
            "Summarize",
            "Predict Outcome",
            "Generate Report",
            "Translate",
            "Perform Named Entity Recognition",
            "Perform Enhanced EDA",
            "Fetch Clinical Studies",
            "Fetch PubMed Articles (Legacy)",
            "Fetch PubMed by Query",
            "Fetch Crossref by Query",
        ],
        label="Select an Action",
    )
    translation_option = gr.Dropdown(
        choices=list(LANGUAGE_MAP.keys()), 
        label="Translation Option", 
        value="English to French"
    )
    query_params_input = gr.Textbox(
        label="Query Parameters (JSON Format)",
        placeholder='{"term": "cancer", "retmax": "5"}'
    )
    nct_id_input = gr.Textbox(label="NCT ID for Article Search")
    report_filename_input = gr.Textbox(
        label="Report Filename",
        placeholder="clinical_report.pdf",
        value="clinical_report.pdf"
    )
    export_format = gr.Dropdown(["None", "CSV", "JSON"], label="Export Format")
    
    # Outputs
    output_text = gr.Textbox(label="Output", lines=10)
    with gr.Row():
        output_chart = gr.Plot(label="Visualization 1")
        output_chart2 = gr.Plot(label="Visualization 2")
    output_file = gr.File(label="Generated File")
    
    submit_button = gr.Button("Submit")
    
    ################################################################
    #                    MAIN HANDLER FUNCTION                     #
    ################################################################
    
    async def handle_action(
        action: str,
        text: str,
        file_up: gr.File,
        translation_opt: str,
        query_params: str,
        nct_id: str,
        report_filename: str,
        export_format: str
    ) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
        
        # 1) Start with user-provided text
        combined_text = text.strip()
        
        # 2) If user uploaded a file, parse it based on extension
        if file_up is not None:
            file_ext = os.path.splitext(file_up.name)[1].lower()
            
            if file_ext == ".txt":
                file_text = parse_text_file(file_up)
                combined_text = (combined_text + "\n" + file_text).strip()
            
            elif file_ext == ".csv":
                # If user chose EDA, we'll parse into DataFrame below
                # If we just want to combine text for Summarize, etc., do so:
                pass  
            
            elif file_ext in [".xls", ".xlsx"]:
                # We'll handle Excel parsing in the EDA step if needed
                pass
            
            elif file_ext == ".pdf":
                file_text = parse_pdf_file(file_up)
                combined_text = (combined_text + "\n" + file_text).strip()
        
        ### ACTIONS ###
        if action == "Summarize":
            if file_up and file_up.name.endswith(".csv"):
                # Merge CSV text into combined_text 
                # in case user wants summarization of the CSV's raw text
                try:
                    df_csv = parse_csv_file(file_up)
                    # Turn CSV into text
                    csv_as_text = df_csv.to_csv(index=False)
                    combined_text = (combined_text + "\n" + csv_as_text).strip()
                except Exception as e:
                    return f"CSV parse error for Summarize: {e}", None, None, None
            
            # Summarize the combined text
            return summarize_text(combined_text), None, None, None
        
        elif action == "Predict Outcome":
            return _action_predict_outcome(combined_text, file_up)
        
        elif action == "Generate Report":
            # Add CSV content if needed
            if file_up and file_up.name.endswith(".csv"):
                try:
                    df_csv = parse_csv_file(file_up)
                    combined_text += "\n" + df_csv.to_csv(index=False)
                except Exception as e:
                    logger.error(f"Error reading CSV for report: {e}")
            file_path = generate_report(combined_text, filename=report_filename)
            msg = f"Report generated: {file_path}" if file_path else "Report generation failed."
            return msg, None, None, file_path
        
        elif action == "Translate":
            # Optionally read CSV or PDF text?
            if file_up and file_up.name.endswith(".csv"):
                try:
                    df_csv = parse_csv_file(file_up)
                    combined_text += "\n" + df_csv.to_csv(index=False)
                except Exception as e:
                    return f"CSV parse error for Translate: {e}", None, None, None
            translated = translate_text(combined_text, translation_opt)
            return translated, None, None, None
        
        elif action == "Perform Named Entity Recognition":
            # Merge CSV as text if user wants NER on CSV
            if file_up and file_up.name.endswith(".csv"):
                try:
                    df_csv = parse_csv_file(file_up)
                    combined_text += "\n" + df_csv.to_csv(index=False)
                except Exception as e:
                    return f"CSV parse error for NER: {e}", None, None, None
            ner_result = perform_named_entity_recognition(combined_text)
            return ner_result, None, None, None
        
        elif action == "Perform Enhanced EDA":
            return await _action_eda(combined_text, file_up, text)
        
        elif action == "Fetch Clinical Studies":
            if nct_id:
                result = await fetch_articles_by_nct_id(nct_id)
            elif query_params:
                result = await fetch_articles_by_query(query_params)
            else:
                return "Provide either an NCT ID or valid query parameters.", None, None, None
            
            articles = result.get("resultList", {}).get("result", [])
            if not articles:
                return "No articles found.", None, None, None
            
            formatted_results = "\n\n".join(
                f"Title: {a.get('title')}\nJournal: {a.get('journalTitle')} ({a.get('pubYear')})"
                for a in articles
            )
            return formatted_results, None, None, None
        
        elif action in ["Fetch PubMed Articles (Legacy)", "Fetch PubMed by Query"]:
            pubmed_result = await fetch_pubmed_by_query(query_params)
            xml_data = pubmed_result.get("result")
            if xml_data:
                articles = parse_pubmed_xml(xml_data)
                if not articles:
                    return "No articles found.", None, None, None
                formatted = "\n\n".join(
                    f"{a['Title']} - {a['Journal']} ({a['PublicationDate']})"
                    for a in articles if a['Title']
                )
                return formatted if formatted else "No articles found.", None, None, None
            return "No articles found or error fetching data.", None, None, None
        
        elif action == "Fetch Crossref by Query":
            crossref_result = await fetch_crossref_by_query(query_params)
            items = crossref_result.get("message", {}).get("items", [])
            if not items:
                return "No results found.", None, None, None
            formatted = "\n\n".join(
                f"Title: {item.get('title', ['No title'])[0]}, DOI: {item.get('DOI')}"
                for item in items
            )
            return formatted, None, None, None
        
        return "Invalid action.", None, None, None

    def _action_predict_outcome(combined_text: str, file_up: gr.File) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
        # If CSV is uploaded, we can merge it into text or do separate logic
        if file_up and file_up.name.endswith(".csv"):
            try:
                df_csv = parse_csv_file(file_up)
                # Optionally, merge CSV content into the text to be classified
                combined_text_local = combined_text + "\n" + df_csv.to_csv(index=False)
            except Exception as e:
                return f"CSV parse error for Predict Outcome: {e}", None, None, None
        else:
            combined_text_local = combined_text
        
        predictions = predict_outcome(combined_text_local)
        if isinstance(predictions, dict):
            chart = visualize_predictions(predictions)
            return json.dumps(predictions, indent=2), chart, None, None
        return predictions, None, None, None
    
    async def _action_eda(combined_text: str, file_up: Optional[gr.File], raw_text: str) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
        """
        Perform Enhanced EDA on a CSV or Excel file if uploaded.
        If .csv is present, parse as CSV; if .xls/.xlsx is present, parse as Excel.
        """
        # Make sure we either have a file or some data in the text
        if not file_up and not raw_text.strip():
            return "No data provided for EDA.", None, None, None
        
        if file_up:
            file_ext = os.path.splitext(file_up.name)[1].lower()
            if file_ext == ".csv":
                try:
                    df_csv = parse_csv_file(file_up)
                    eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
                    return eda_summary, corr_chart, dist_chart, None
                except Exception as e:
                    return f"CSV EDA failed: {e}", None, None, None
            
            elif file_ext in [".xls", ".xlsx"]:
                try:
                    df_excel = parse_excel_file(file_up)
                    eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_excel)
                    return eda_summary, corr_chart, dist_chart, None
                except Exception as e:
                    return f"Excel EDA failed: {e}", None, None, None
            
            else:
                # EDA not supported for PDF or .txt in this example
                return "No valid CSV/Excel data found for EDA.", None, None, None
        else:
            # If no file, maybe the user pasted CSV into the text box
            if "," in raw_text:
                # Attempt to parse text as CSV
                try:
                    from io import StringIO
                    df_csv = pd.read_csv(StringIO(raw_text))
                    eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
                    return eda_summary, corr_chart, dist_chart, None
                except Exception as e:
                    return f"EDA parse error for pasted CSV: {e}", None, None, None
            return "No valid CSV/Excel data found for EDA.", None, None, None

    submit_button.click(
        handle_action,
        inputs=[
            action,
            text_input,
            file_input,
            translation_option,
            query_params_input,
            nct_id_input,
            report_filename_input,
            export_format,
        ],
        outputs=[
            output_text,
            output_chart,
            output_chart2,
            output_file,
        ],
    )

demo.launch(server_name="0.0.0.0", server_port=7860, share=True)