File size: 17,839 Bytes
33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 976c5ea 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 976c5ea 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 2cebaf2 33c4308 976c5ea 33c4308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import base64
import io
from groq import Groq
from pydantic import BaseModel, Field
from typing import Dict, List, Optional
from langchain.tools import tool
from langchain.agents import initialize_agent, AgentType
from scipy.stats import ttest_ind, f_oneway
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller
from jinja2 import Template
# Initialize Groq Client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
class ResearchInput(BaseModel):
"""Base schema for research tool inputs, ensuring type and description integrity."""
data_key: str = Field(..., description="Session state key containing the DataFrame.")
columns: Optional[List[str]] = Field(None, description="List of column names to analyze.")
class TemporalAnalysisInput(ResearchInput):
"""Schema for temporal analysis inputs, focusing on specific time-series requirements."""
time_col: str = Field(..., description="Name of the column containing timestamp data.")
value_col: str = Field(..., description="Name of the column containing numerical values to analyze.")
class HypothesisInput(ResearchInput):
"""Schema for hypothesis testing, demanding group and value specification for statistical rigor."""
group_col: str = Field(..., description="Categorical column defining the groups for comparison.")
value_col: str = Field(..., description="Numerical column for comparing means across groups.")
class GroqResearcher:
"""
A sophisticated AI research engine powered by Groq, designed for rigorous academic-style analysis.
This class handles complex data queries and delivers structured research outputs.
"""
def __init__(self, model_name="mixtral-8x7b-32768"):
self.model_name = model_name
self.system_template = """
You are a senior data scientist at a prestigious research institution. Your analysis must
adhere to rigorous scientific standards. Consider the dataset properties and the user's query.
Dataset Context:
- Dimensions: {{ dataset_shape }}
- Variables: {{ dataset_variables }}
- Temporal Coverage: {{ temporal_coverage }}
- Missing Value Counts: {{ missing_values }}
User Inquiry: {{ query }}
Response Structure (Critical for all analyses):
1. **Executive Summary:** Provide a 1-2 paragraph overview of the findings, contextualized within the dataset's characteristics.
2. **Methodology:** Detail the exact analysis techniques used, including statistical tests or model types, and their justification.
3. **Key Findings:** Present the most significant observations and statistical results (p-values, effect sizes) with proper interpretation.
4. **Limitations:** Acknowledge and describe the constraints of the dataset or analytical methods that might affect the results' interpretation or generalizability.
5. **Recommended Next Steps:** Suggest future studies, experiments, or analyses that could extend the current investigation and address the noted limitations.
"""
def research(self, query: str, data: pd.DataFrame) -> str:
"""Executes in-depth research using the Groq API to produce academic-quality analyses."""
try:
dataset_info = {
"dataset_shape": str(data.shape),
"dataset_variables": ", ".join(data.columns),
"temporal_coverage": str(data.select_dtypes(include='datetime').columns.tolist()),
"missing_values": str(data.isnull().sum().to_dict()),
}
prompt = Template(self.system_template).render(**dataset_info, query=query)
completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a research AI assistant."},
{"role": "user", "content": prompt}
],
model=self.model_name,
temperature=0.2,
max_tokens=4096,
stream=False
)
return completion.choices[0].message.content
except Exception as e:
return f"Research Error Encountered: {str(e)}"
@tool(args_schema=ResearchInput)
def advanced_eda(data_key: str) -> Dict:
"""
Performs a comprehensive Exploratory Data Analysis, including statistical profiling,
temporal analysis of datetime columns, and detailed quality checks.
"""
try:
data = st.session_state[data_key]
analysis = {
"dimensionality": {
"rows": int(len(data)), # Ensure rows are an integer
"columns": list(data.columns),
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
},
"statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(),
"temporal_analysis": {
"date_ranges": {
col: {
"min": str(data[col].min()), # Ensure date is a string
"max": str(data[col].max()) # Ensure date is a string
} for col in data.select_dtypes(include='datetime').columns
}
},
"data_quality": {
"missing_values": data.isnull().sum().to_dict(),
"duplicates": int(data.duplicated().sum()), # Ensure duplicates are an integer
"cardinality": {
col: int(data[col].nunique()) for col in data.columns # Ensure cardinality is integer
}
}
}
return analysis
except Exception as e:
return {"error": f"Advanced EDA Failed: {str(e)}"}
@tool(args_schema=ResearchInput)
def visualize_distributions(data_key: str, columns: List[str]) -> str:
"""
Generates high-quality, publication-ready distribution visualizations (histograms with KDE)
for selected numerical columns, and returns the image as a base64 encoded string.
"""
try:
data = st.session_state[data_key]
plt.figure(figsize=(15, 7)) # Adjusted figure size for better readability
for i, col in enumerate(columns, 1):
plt.subplot(1, len(columns), i)
sns.histplot(data[col], kde=True, stat="density", color=sns.color_palette()[i % len(sns.color_palette())])
plt.title(f'Distribution of {col}', fontsize=14, fontweight='bold') # Enhanced title
plt.xlabel(col, fontsize=12)
plt.ylabel('Density', fontsize=12)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.grid(axis='y', linestyle='--')
sns.despine(top=True, right=True) # Improved styling
plt.tight_layout(pad=2) # Added padding for tight layout
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
except Exception as e:
return f"Distribution Visualization Error: {str(e)}"
@tool(args_schema=TemporalAnalysisInput)
def temporal_analysis(data_key: str, time_col: str, value_col: str) -> Dict:
"""
Performs a sophisticated time series analysis, including decomposition and trend assessment,
providing both statistical insights and a visual representation.
"""
try:
data = st.session_state[data_key]
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col].dropna() # Handle NaNs
if ts_data.empty:
return {"error": "No valid time series data found for analysis after NaN removal."}
decomposition = seasonal_decompose(ts_data, model='additive', period=min(len(ts_data), 365) if len(ts_data) > 10 else 1)
plt.figure(figsize=(16, 10))
decomposition.plot()
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=300) # Increased dpi for higher resolution
plt.close()
plot_data = base64.b64encode(buf.getvalue()).decode()
adf_result = adfuller(ts_data)
stationarity_p_value = adf_result[1]
return {
"trend_statistics": {
"stationarity": stationarity_p_value,
"stationarity_interpretation": interpret_p_value(stationarity_p_value),
"seasonality_strength": max(decomposition.seasonal) if hasattr(decomposition, 'seasonal') else None
},
"visualization": plot_data,
"decomposition_data": {
"trend": decomposition.trend.dropna().to_dict() if hasattr(decomposition, 'trend') else None,
"seasonal": decomposition.seasonal.dropna().to_dict() if hasattr(decomposition, 'seasonal') else None,
"residual": decomposition.resid.dropna().to_dict() if hasattr(decomposition, 'resid') else None,
}
}
except Exception as e:
return {"error": f"Temporal Analysis Failure: {str(e)}"}
@tool(args_schema=HypothesisInput)
def hypothesis_testing(data_key: str, group_col: str, value_col: str) -> Dict:
"""
Conducts statistical hypothesis testing, providing detailed test results, effect size measures,
and interpretations for both t-tests and ANOVAs.
"""
try:
data = st.session_state[data_key]
groups = data[group_col].unique()
if len(groups) < 2:
return {"error": "Insufficient groups for comparison. Must have at least two groups."}
group_data = [data[data[group_col] == g][value_col].dropna() for g in groups]
if any(len(group) < 2 for group in group_data):
return {"error": "Each group must have at least two data points for testing."}
if len(groups) == 2:
stat, p = ttest_ind(*group_data)
test_type = "Independent t-test"
else:
stat, p = f_oneway(*group_data)
test_type = "ANOVA"
effect_size = None
if len(groups) == 2:
pooled_variance = np.sqrt((group_data[0].var() + group_data[1].var()) / 2)
if pooled_variance != 0:
cohens_d = abs(group_data[0].mean() - group_data[1].mean()) / pooled_variance
effect_size = {"cohens_d": cohens_d}
else:
effect_size = {"cohens_d": None, "error": "Cannot compute effect size due to zero pooled variance."}
return {
"test_type": test_type,
"test_statistic": float(stat), # Ensure stat is a float
"p_value": float(p), # Ensure p_value is a float
"effect_size": effect_size,
"interpretation": interpret_p_value(p),
"group_means": {g: float(data[data[group_col] == g][value_col].mean()) for g in groups} # Group Means
}
except Exception as e:
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
def interpret_p_value(p: float) -> str:
"""Provides nuanced interpretations of p-values, including qualitative descriptors."""
if p < 0.001: return "Highly significant evidence against the null hypothesis (p < 0.001)."
elif p < 0.01: return "Strong evidence against the null hypothesis (0.001 ≤ p < 0.01)."
elif p < 0.05: return "Moderate evidence against the null hypothesis (0.01 ≤ p < 0.05)."
elif p < 0.1: return "Weak evidence against the null hypothesis (0.05 ≤ p < 0.1)."
else: return "No significant evidence against the null hypothesis (p ≥ 0.1)."
def main():
st.set_page_config(page_title="AI Research Lab", layout="wide")
st.title("🧪 Advanced AI Research Laboratory")
# Session state initialization
if 'data' not in st.session_state:
st.session_state.data = None
if 'researcher' not in st.session_state:
st.session_state.researcher = GroqResearcher()
# Data upload and management
with st.sidebar:
st.header("🔬 Data Management")
uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
if uploaded_file:
with st.spinner("Initializing dataset..."):
try:
st.session_state.data = pd.read_csv(uploaded_file)
st.success(f"Loaded {len(st.session_state.data):,} research observations")
except Exception as e:
st.error(f"Error loading the dataset. Please ensure it's a valid CSV or Parquet format. Error details: {e}")
# Main research interface
if st.session_state.data is not None:
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("Dataset Metadata")
st.json({
"Variables": list(st.session_state.data.columns),
"Time Range": {
col: {
"min": str(st.session_state.data[col].min()),
"max": str(st.session_state.data[col].max())
} for col in st.session_state.data.select_dtypes(include='datetime').columns
} if st.session_state.data.select_dtypes(include='datetime').columns.tolist() else "No Temporal Data",
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
})
with col2:
analysis_tab, research_tab = st.tabs(["Automated Analysis", "Custom Research"])
with analysis_tab:
analysis_type = st.selectbox("Select Analysis Mode", [
"Exploratory Data Analysis",
"Temporal Pattern Analysis",
"Comparative Statistics",
"Distribution Analysis"
])
if analysis_type == "Exploratory Data Analysis":
eda_result = advanced_eda.invoke({"data_key": "data"})
st.subheader("Data Quality Report")
st.json(eda_result)
elif analysis_type == "Temporal Pattern Analysis":
time_cols = st.session_state.data.select_dtypes(include='datetime').columns.tolist()
if not time_cols:
st.warning("No datetime columns detected. Please ensure you have a datetime column for this analysis.")
else:
time_col = st.selectbox("Temporal Variable", time_cols)
value_col = st.selectbox("Analysis Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if time_col and value_col:
result = temporal_analysis.invoke({
"data_key": "data",
"time_col": time_col,
"value_col": value_col
})
if "visualization" in result:
st.image(f"data:image/png;base64,{result['visualization']}",
use_column_width=True)
st.json(result)
elif analysis_type == "Comparative Statistics":
cat_cols = st.session_state.data.select_dtypes(include='category').columns.tolist() + st.session_state.data.select_dtypes(include='object').columns.tolist()
if not cat_cols:
st.warning("No categorical columns detected. Please ensure you have a categorical column for this analysis.")
else:
group_col = st.selectbox("Grouping Variable", cat_cols)
value_col = st.selectbox("Metric Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if group_col and value_col:
result = hypothesis_testing.invoke({
"data_key": "data",
"group_col": group_col,
"value_col": value_col
})
st.subheader("Statistical Test Results")
st.json(result)
elif analysis_type == "Distribution Analysis":
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
selected_cols = st.multiselect("Select Variables", num_cols)
if selected_cols:
img_data = visualize_distributions.invoke({
"data_key": "data",
"columns": selected_cols
})
st.image(f"data:image/png;base64,{img_data}",
use_column_width=True)
with research_tab:
research_query = st.text_area("Enter Research Question:", height=150,
placeholder="E.g., 'What factors are most predictive of X outcome?'")
if st.button("Execute Research"):
with st.spinner("Conducting rigorous analysis..."):
result = st.session_state.researcher.research(
research_query, st.session_state.data
)
st.markdown("## Research Findings")
st.markdown(result)
if __name__ == "__main__":
main() |