File size: 17,839 Bytes
33c4308
 
 
 
 
 
 
 
 
 
 
 
 
 
2cebaf2
 
 
33c4308
 
 
 
2cebaf2
33c4308
2cebaf2
 
 
 
33c4308
 
2cebaf2
 
 
 
33c4308
 
2cebaf2
 
 
 
33c4308
 
2cebaf2
 
 
 
 
33c4308
 
2cebaf2
 
 
33c4308
2cebaf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c4308
 
2cebaf2
33c4308
2cebaf2
 
 
 
 
 
 
 
 
33c4308
 
2cebaf2
33c4308
 
 
 
 
 
 
 
 
2cebaf2
 
33c4308
 
 
2cebaf2
 
 
 
33c4308
 
 
 
2cebaf2
33c4308
 
 
 
 
 
 
2cebaf2
 
33c4308
 
 
 
 
2cebaf2
33c4308
2cebaf2
33c4308
 
976c5ea
33c4308
 
2cebaf2
33c4308
 
 
2cebaf2
 
 
 
33c4308
 
2cebaf2
33c4308
 
2cebaf2
 
 
 
 
 
 
 
 
33c4308
 
 
 
 
 
2cebaf2
 
33c4308
 
 
2cebaf2
 
 
 
33c4308
 
2cebaf2
 
 
 
 
 
 
 
33c4308
 
2cebaf2
33c4308
2cebaf2
33c4308
 
2cebaf2
 
 
 
33c4308
 
2cebaf2
 
 
33c4308
2cebaf2
 
 
 
 
 
33c4308
 
2cebaf2
33c4308
 
 
2cebaf2
 
 
 
33c4308
 
 
 
 
2cebaf2
 
 
 
 
 
33c4308
 
 
 
976c5ea
33c4308
 
 
2cebaf2
 
 
 
 
 
 
 
 
33c4308
 
2cebaf2
 
 
 
 
33c4308
 
 
 
 
2cebaf2
 
 
 
 
 
33c4308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cebaf2
 
 
 
 
 
33c4308
 
 
 
 
 
 
 
 
 
2cebaf2
 
33c4308
2cebaf2
33c4308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cebaf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c4308
 
2cebaf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c4308
 
 
 
 
 
 
 
 
2cebaf2
 
33c4308
 
 
 
 
 
 
 
 
 
 
 
976c5ea
33c4308
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import base64
import io
from groq import Groq
from pydantic import BaseModel, Field
from typing import Dict, List, Optional
from langchain.tools import tool
from langchain.agents import initialize_agent, AgentType
from scipy.stats import ttest_ind, f_oneway
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller
from jinja2 import Template

# Initialize Groq Client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))


class ResearchInput(BaseModel):
    """Base schema for research tool inputs, ensuring type and description integrity."""
    data_key: str = Field(..., description="Session state key containing the DataFrame.")
    columns: Optional[List[str]] = Field(None, description="List of column names to analyze.")


class TemporalAnalysisInput(ResearchInput):
    """Schema for temporal analysis inputs, focusing on specific time-series requirements."""
    time_col: str = Field(..., description="Name of the column containing timestamp data.")
    value_col: str = Field(..., description="Name of the column containing numerical values to analyze.")


class HypothesisInput(ResearchInput):
    """Schema for hypothesis testing, demanding group and value specification for statistical rigor."""
    group_col: str = Field(..., description="Categorical column defining the groups for comparison.")
    value_col: str = Field(..., description="Numerical column for comparing means across groups.")


class GroqResearcher:
    """
    A sophisticated AI research engine powered by Groq, designed for rigorous academic-style analysis.
    This class handles complex data queries and delivers structured research outputs.
    """

    def __init__(self, model_name="mixtral-8x7b-32768"):
        self.model_name = model_name
        self.system_template = """
        You are a senior data scientist at a prestigious research institution. Your analysis must 
        adhere to rigorous scientific standards. Consider the dataset properties and the user's query.
        
        Dataset Context:
        - Dimensions: {{ dataset_shape }}
        - Variables: {{ dataset_variables }}
        - Temporal Coverage: {{ temporal_coverage }}
        - Missing Value Counts: {{ missing_values }}

        User Inquiry: {{ query }}

        Response Structure (Critical for all analyses):
        1. **Executive Summary:** Provide a 1-2 paragraph overview of the findings, contextualized within the dataset's characteristics.
        2. **Methodology:** Detail the exact analysis techniques used, including statistical tests or model types, and their justification.
        3. **Key Findings:** Present the most significant observations and statistical results (p-values, effect sizes) with proper interpretation.
        4. **Limitations:** Acknowledge and describe the constraints of the dataset or analytical methods that might affect the results' interpretation or generalizability.
        5. **Recommended Next Steps:** Suggest future studies, experiments, or analyses that could extend the current investigation and address the noted limitations.

        """

    def research(self, query: str, data: pd.DataFrame) -> str:
        """Executes in-depth research using the Groq API to produce academic-quality analyses."""
        try:
            dataset_info = {
                "dataset_shape": str(data.shape),
                "dataset_variables": ", ".join(data.columns),
                "temporal_coverage": str(data.select_dtypes(include='datetime').columns.tolist()),
                "missing_values": str(data.isnull().sum().to_dict()),
            }

            prompt = Template(self.system_template).render(**dataset_info, query=query)

            completion = client.chat.completions.create(
                messages=[
                    {"role": "system", "content": "You are a research AI assistant."},
                    {"role": "user", "content": prompt}
                ],
                model=self.model_name,
                temperature=0.2,
                max_tokens=4096,
                stream=False
            )
            return completion.choices[0].message.content
        except Exception as e:
            return f"Research Error Encountered: {str(e)}"


@tool(args_schema=ResearchInput)
def advanced_eda(data_key: str) -> Dict:
    """
    Performs a comprehensive Exploratory Data Analysis, including statistical profiling,
    temporal analysis of datetime columns, and detailed quality checks.
    """
    try:
        data = st.session_state[data_key]
        analysis = {
            "dimensionality": {
                "rows": int(len(data)),  # Ensure rows are an integer
                "columns": list(data.columns),
                "memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
            },
            "statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(),
            "temporal_analysis": {
                "date_ranges": {
                    col: {
                        "min": str(data[col].min()),  # Ensure date is a string
                        "max": str(data[col].max())  # Ensure date is a string
                    } for col in data.select_dtypes(include='datetime').columns
                }
            },
            "data_quality": {
                "missing_values": data.isnull().sum().to_dict(),
                "duplicates": int(data.duplicated().sum()),  # Ensure duplicates are an integer
                "cardinality": {
                    col: int(data[col].nunique()) for col in data.columns  # Ensure cardinality is integer
                }
            }
        }
        return analysis
    except Exception as e:
        return {"error": f"Advanced EDA Failed: {str(e)}"}

@tool(args_schema=ResearchInput)
def visualize_distributions(data_key: str, columns: List[str]) -> str:
    """
    Generates high-quality, publication-ready distribution visualizations (histograms with KDE)
    for selected numerical columns, and returns the image as a base64 encoded string.
    """
    try:
        data = st.session_state[data_key]
        plt.figure(figsize=(15, 7))  # Adjusted figure size for better readability
        for i, col in enumerate(columns, 1):
            plt.subplot(1, len(columns), i)
            sns.histplot(data[col], kde=True, stat="density", color=sns.color_palette()[i % len(sns.color_palette())])
            plt.title(f'Distribution of {col}', fontsize=14, fontweight='bold')  # Enhanced title
            plt.xlabel(col, fontsize=12)
            plt.ylabel('Density', fontsize=12)
            plt.xticks(fontsize=10)
            plt.yticks(fontsize=10)
            plt.grid(axis='y', linestyle='--')
            sns.despine(top=True, right=True)  # Improved styling
        plt.tight_layout(pad=2)  # Added padding for tight layout
        
        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
        plt.close()
        return base64.b64encode(buf.getvalue()).decode()
    except Exception as e:
        return f"Distribution Visualization Error: {str(e)}"


@tool(args_schema=TemporalAnalysisInput)
def temporal_analysis(data_key: str, time_col: str, value_col: str) -> Dict:
    """
    Performs a sophisticated time series analysis, including decomposition and trend assessment,
    providing both statistical insights and a visual representation.
    """
    try:
        data = st.session_state[data_key]
        ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col].dropna()  # Handle NaNs

        if ts_data.empty:
            return {"error": "No valid time series data found for analysis after NaN removal."}

        decomposition = seasonal_decompose(ts_data, model='additive', period=min(len(ts_data), 365) if len(ts_data) > 10 else 1)
         
        plt.figure(figsize=(16, 10))
        decomposition.plot()
        plt.tight_layout()

        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=300)  # Increased dpi for higher resolution
        plt.close()
        plot_data = base64.b64encode(buf.getvalue()).decode()
         
        adf_result = adfuller(ts_data)
        stationarity_p_value = adf_result[1]

        return {
            "trend_statistics": {
                "stationarity": stationarity_p_value,
                "stationarity_interpretation": interpret_p_value(stationarity_p_value),
                "seasonality_strength": max(decomposition.seasonal) if hasattr(decomposition, 'seasonal') else None
            },
            "visualization": plot_data,
            "decomposition_data": {
                "trend": decomposition.trend.dropna().to_dict() if hasattr(decomposition, 'trend') else None,
                "seasonal": decomposition.seasonal.dropna().to_dict() if hasattr(decomposition, 'seasonal') else None,
                "residual": decomposition.resid.dropna().to_dict() if hasattr(decomposition, 'resid') else None,
            }
        }
    except Exception as e:
        return {"error": f"Temporal Analysis Failure: {str(e)}"}

@tool(args_schema=HypothesisInput)
def hypothesis_testing(data_key: str, group_col: str, value_col: str) -> Dict:
    """
    Conducts statistical hypothesis testing, providing detailed test results, effect size measures,
    and interpretations for both t-tests and ANOVAs.
    """
    try:
        data = st.session_state[data_key]
        groups = data[group_col].unique()
        
        if len(groups) < 2:
            return {"error": "Insufficient groups for comparison. Must have at least two groups."}
            
        group_data = [data[data[group_col] == g][value_col].dropna() for g in groups]

        if any(len(group) < 2 for group in group_data):
             return {"error": "Each group must have at least two data points for testing."}
            
        if len(groups) == 2:
            stat, p = ttest_ind(*group_data)
            test_type = "Independent t-test"
        else:
            stat, p = f_oneway(*group_data)
            test_type = "ANOVA"
        
        effect_size = None
        if len(groups) == 2:
            pooled_variance = np.sqrt((group_data[0].var() + group_data[1].var()) / 2)
            if pooled_variance != 0:
                cohens_d = abs(group_data[0].mean() - group_data[1].mean()) / pooled_variance
                effect_size = {"cohens_d": cohens_d}
            else:
                effect_size = {"cohens_d": None, "error": "Cannot compute effect size due to zero pooled variance."}

        return {
            "test_type": test_type,
            "test_statistic": float(stat),  # Ensure stat is a float
            "p_value": float(p),  # Ensure p_value is a float
            "effect_size": effect_size,
            "interpretation": interpret_p_value(p),
             "group_means": {g: float(data[data[group_col] == g][value_col].mean()) for g in groups} # Group Means
        }
    except Exception as e:
        return {"error": f"Hypothesis Testing Failed: {str(e)}"}

def interpret_p_value(p: float) -> str:
    """Provides nuanced interpretations of p-values, including qualitative descriptors."""
    if p < 0.001: return "Highly significant evidence against the null hypothesis (p < 0.001)."
    elif p < 0.01: return "Strong evidence against the null hypothesis (0.001 ≤ p < 0.01)."
    elif p < 0.05: return "Moderate evidence against the null hypothesis (0.01 ≤ p < 0.05)."
    elif p < 0.1: return "Weak evidence against the null hypothesis (0.05 ≤ p < 0.1)."
    else: return "No significant evidence against the null hypothesis (p ≥ 0.1)."

def main():
    st.set_page_config(page_title="AI Research Lab", layout="wide")
    st.title("🧪 Advanced AI Research Laboratory")
    
    # Session state initialization
    if 'data' not in st.session_state:
        st.session_state.data = None
    if 'researcher' not in st.session_state:
        st.session_state.researcher = GroqResearcher()
    
    # Data upload and management
    with st.sidebar:
        st.header("🔬 Data Management")
        uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
        if uploaded_file:
            with st.spinner("Initializing dataset..."):
                try:
                    st.session_state.data = pd.read_csv(uploaded_file)
                    st.success(f"Loaded {len(st.session_state.data):,} research observations")
                except Exception as e:
                   st.error(f"Error loading the dataset. Please ensure it's a valid CSV or Parquet format. Error details: {e}")
        
    # Main research interface
    if st.session_state.data is not None:
        col1, col2 = st.columns([1, 3])
        
        with col1:
            st.subheader("Dataset Metadata")
            st.json({
                "Variables": list(st.session_state.data.columns),
                "Time Range": {
                    col: {
                        "min": str(st.session_state.data[col].min()),
                        "max": str(st.session_state.data[col].max())
                    } for col in st.session_state.data.select_dtypes(include='datetime').columns
                } if st.session_state.data.select_dtypes(include='datetime').columns.tolist() else "No Temporal Data",
                "Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
            })
        
        with col2:
            analysis_tab, research_tab = st.tabs(["Automated Analysis", "Custom Research"])
            
            with analysis_tab:
                analysis_type = st.selectbox("Select Analysis Mode", [
                    "Exploratory Data Analysis",
                    "Temporal Pattern Analysis",
                    "Comparative Statistics",
                    "Distribution Analysis"
                ])
                
                if analysis_type == "Exploratory Data Analysis":
                    eda_result = advanced_eda.invoke({"data_key": "data"})
                    st.subheader("Data Quality Report")
                    st.json(eda_result)
                
                elif analysis_type == "Temporal Pattern Analysis":
                    time_cols = st.session_state.data.select_dtypes(include='datetime').columns.tolist()
                    if not time_cols:
                        st.warning("No datetime columns detected. Please ensure you have a datetime column for this analysis.")
                    else:
                        time_col = st.selectbox("Temporal Variable", time_cols)
                        value_col = st.selectbox("Analysis Variable",
                            st.session_state.data.select_dtypes(include=np.number).columns)
                        
                        if time_col and value_col:
                            result = temporal_analysis.invoke({
                                "data_key": "data",
                                "time_col": time_col,
                                "value_col": value_col
                            })
                            if "visualization" in result:
                                st.image(f"data:image/png;base64,{result['visualization']}",
                                    use_column_width=True)
                            st.json(result)
                
                elif analysis_type == "Comparative Statistics":
                    cat_cols = st.session_state.data.select_dtypes(include='category').columns.tolist() + st.session_state.data.select_dtypes(include='object').columns.tolist()
                    if not cat_cols:
                         st.warning("No categorical columns detected. Please ensure you have a categorical column for this analysis.")
                    else:
                        group_col = st.selectbox("Grouping Variable", cat_cols)
                        value_col = st.selectbox("Metric Variable",
                            st.session_state.data.select_dtypes(include=np.number).columns)
                        
                        if group_col and value_col:
                            result = hypothesis_testing.invoke({
                                "data_key": "data",
                                "group_col": group_col,
                                "value_col": value_col
                            })
                            st.subheader("Statistical Test Results")
                            st.json(result)
                
                elif analysis_type == "Distribution Analysis":
                    num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
                    selected_cols = st.multiselect("Select Variables", num_cols)
                    if selected_cols:
                        img_data = visualize_distributions.invoke({
                            "data_key": "data",
                            "columns": selected_cols
                        })
                        st.image(f"data:image/png;base64,{img_data}",
                                 use_column_width=True)
            
            with research_tab:
                research_query = st.text_area("Enter Research Question:", height=150,
                    placeholder="E.g., 'What factors are most predictive of X outcome?'")
                
                if st.button("Execute Research"):
                    with st.spinner("Conducting rigorous analysis..."):
                        result = st.session_state.researcher.research(
                            research_query, st.session_state.data
                        )
                        st.markdown("## Research Findings")
                        st.markdown(result)

if __name__ == "__main__":
    main()