File size: 12,723 Bytes
33c4308 976c5ea 33c4308 976c5ea 33c4308 976c5ea 33c4308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import base64
import io
from groq import Groq
from pydantic import BaseModel, Field
from typing import Dict, List, Optional
from langchain.tools import tool
from langchain.agents import initialize_agent, AgentType
from scipy.stats import ttest_ind, f_oneway
# Initialize Groq Client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
class ResearchInput(BaseModel):
"""Base schema for research tool inputs"""
data_key: str = Field(..., description="Session state key containing DataFrame")
columns: Optional[List[str]] = Field(None, description="List of columns to analyze")
class TemporalAnalysisInput(ResearchInput):
"""Schema for temporal analysis"""
time_col: str = Field(..., description="Name of timestamp column")
value_col: str = Field(..., description="Name of value column to analyze")
class HypothesisInput(ResearchInput):
"""Schema for hypothesis testing"""
group_col: str = Field(..., description="Categorical column defining groups")
value_col: str = Field(..., description="Numerical column to compare")
class GroqResearcher:
"""Advanced AI Research Engine using Groq"""
def __init__(self, model_name="mixtral-8x7b-32768"):
self.model_name = model_name
self.system_template = """You are a senior data scientist at a research institution.
Analyze this dataset with rigorous statistical methods and provide academic-quality insights:
{dataset_info}
User Question: {query}
Required Format:
- Executive Summary (1 paragraph)
- Methodology (bullet points)
- Key Findings (numbered list)
- Limitations
- Recommended Next Steps"""
def research(self, query: str, data: pd.DataFrame) -> str:
"""Conduct academic-level analysis using Groq"""
try:
dataset_info = f"""
Dataset Dimensions: {data.shape}
Variables: {', '.join(data.columns)}
Temporal Coverage: {data.select_dtypes(include='datetime').columns.tolist()}
Missing Values: {data.isnull().sum().to_dict()}
"""
prompt = PromptTemplate.from_template(self.system_template).format(
dataset_info=dataset_info,
query=query
)
completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a research AI assistant"},
{"role": "user", "content": prompt}
],
model=self.model_name,
temperature=0.2,
max_tokens=4096,
stream=False
)
return completion.choices[0].message.content
except Exception as e:
return f"Research Error: {str(e)}"
@tool(args_schema=ResearchInput)
def advanced_eda(data_key: str) -> Dict:
"""Comprehensive Exploratory Data Analysis with Statistical Profiling"""
try:
data = st.session_state[data_key]
analysis = {
"dimensionality": {
"rows": len(data),
"columns": list(data.columns),
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
},
"statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(),
"temporal_analysis": {
"date_ranges": {
col: {
"min": data[col].min(),
"max": data[col].max()
} for col in data.select_dtypes(include='datetime').columns
}
},
"data_quality": {
"missing_values": data.isnull().sum().to_dict(),
"duplicates": data.duplicated().sum(),
"cardinality": {
col: data[col].nunique() for col in data.columns
}
}
}
return analysis
except Exception as e:
return {"error": f"EDA Failed: {str(e)}"}
@tool(args_schema=ResearchInput)
def visualize_distributions(data_key: str, columns: List[str]) -> str:
"""Generate publication-quality distribution visualizations"""
try:
data = st.session_state[data_key]
plt.figure(figsize=(12, 6))
for i, col in enumerate(columns, 1):
plt.subplot(1, len(columns), i)
sns.histplot(data[col], kde=True, stat="density")
plt.title(f'Distribution of {col}', fontsize=10)
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
except Exception as e:
return f"Visualization Error: {str(e)}"
@tool(args_schema=TemporalAnalysisInput)
def temporal_analysis(data_key: str, time_col: str, value_col: str) -> Dict:
"""Time Series Decomposition and Trend Analysis"""
try:
data = st.session_state[data_key]
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col]
decomposition = seasonal_decompose(ts_data, period=365)
plt.figure(figsize=(12, 8))
decomposition.plot()
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
plot_data = base64.b64encode(buf.getvalue()).decode()
return {
"trend_statistics": {
"stationarity": adfuller(ts_data)[1],
"seasonality_strength": max(decomposition.seasonal)
},
"visualization": plot_data
}
except Exception as e:
return {"error": f"Temporal Analysis Failed: {str(e)}"}
@tool(args_schema=HypothesisInput)
def hypothesis_testing(data_key: str, group_col: str, value_col: str) -> Dict:
"""Statistical Hypothesis Testing with Automated Assumption Checking"""
try:
data = st.session_state[data_key]
groups = data[group_col].unique()
if len(groups) < 2:
return {"error": "Insufficient groups for comparison"}
if len(groups) == 2:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = ttest_ind(*group_data)
test_type = "Independent t-test"
else:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = f_oneway(*group_data)
test_type = "ANOVA"
return {
"test_type": test_type,
"test_statistic": stat,
"p_value": p,
"effect_size": {
"cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt(
(group_data[0].var() + group_data[1].var())/2
) if len(groups) == 2 else None
},
"interpretation": interpret_p_value(p)
}
except Exception as e:
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
def interpret_p_value(p: float) -> str:
"""Scientific interpretation of p-values"""
if p < 0.001: return "Very strong evidence against H0"
elif p < 0.01: return "Strong evidence against H0"
elif p < 0.05: return "Evidence against H0"
elif p < 0.1: return "Weak evidence against H0"
else: return "No significant evidence against H0"
def main():
st.set_page_config(page_title="AI Research Lab", layout="wide")
st.title("🧪 Advanced AI Research Laboratory")
# Session state initialization
if 'data' not in st.session_state:
st.session_state.data = None
if 'researcher' not in st.session_state:
st.session_state.researcher = GroqResearcher()
# Data upload and management
with st.sidebar:
st.header("🔬 Data Management")
uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
if uploaded_file:
with st.spinner("Initializing dataset..."):
st.session_state.data = pd.read_csv(uploaded_file)
st.success(f"Loaded {len(st.session_state.data):,} research observations")
# Main research interface
if st.session_state.data is not None:
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("Dataset Metadata")
st.json({
"Variables": list(st.session_state.data.columns),
"Time Range": {
col: {
"min": st.session_state.data[col].min(),
"max": st.session_state.data[col].max()
} for col in st.session_state.data.select_dtypes(include='datetime').columns
},
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
})
with col2:
analysis_tab, research_tab = st.tabs(["Automated Analysis", "Custom Research"])
with analysis_tab:
analysis_type = st.selectbox("Select Analysis Mode", [
"Exploratory Data Analysis",
"Temporal Pattern Analysis",
"Comparative Statistics",
"Distribution Analysis"
])
if analysis_type == "Exploratory Data Analysis":
eda_result = advanced_eda.invoke({"data_key": "data"})
st.subheader("Data Quality Report")
st.json(eda_result)
elif analysis_type == "Temporal Pattern Analysis":
time_col = st.selectbox("Temporal Variable",
st.session_state.data.select_dtypes(include='datetime').columns)
value_col = st.selectbox("Analysis Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if time_col and value_col:
result = temporal_analysis.invoke({
"data_key": "data",
"time_col": time_col,
"value_col": value_col
})
if "visualization" in result:
st.image(f"data:image/png;base64,{result['visualization']}")
st.json(result)
elif analysis_type == "Comparative Statistics":
group_col = st.selectbox("Grouping Variable",
st.session_state.data.select_dtypes(include='category').columns)
value_col = st.selectbox("Metric Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if group_col and value_col:
result = hypothesis_testing.invoke({
"data_key": "data",
"group_col": group_col,
"value_col": value_col
})
st.subheader("Statistical Test Results")
st.json(result)
elif analysis_type == "Distribution Analysis":
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
selected_cols = st.multiselect("Select Variables", num_cols)
if selected_cols:
img_data = visualize_distributions.invoke({
"data_key": "data",
"columns": selected_cols
})
st.image(f"data:image/png;base64,{img_data}")
with research_tab:
research_query = st.text_area("Enter Research Question:", height=150,
placeholder="E.g., 'What factors are most predictive of X outcome?'")
if st.button("Execute Research"):
with st.spinner("Conducting rigorous analysis..."):
result = st.session_state.researcher.research(
research_query, st.session_state.data
)
st.markdown("## Research Findings")
st.markdown(result)
if __name__ == "__main__":
main() |