MCP_Res / app.py
mgbam's picture
Update app.py
b6ee928 verified
raw
history blame
7.3 kB
# app.py — MedGenesis AI (CPU edition)
import asyncio, re
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph
from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.workspace import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
from mcp.alerts import check_alerts
ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"
# ---------------------------------------------------------------------
def pdf_from_papers(papers):
pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=12)
pdf.cell(200, 10, "MedGenesis AI — Results", ln=True, align="C"); pdf.ln(8)
for i, p in enumerate(papers, 1):
pdf.set_font("Arial", "B", 12)
pdf.multi_cell(0, 8, f"{i}. {p['title']}")
pdf.set_font("Arial", "", 9)
pdf.multi_cell(0, 6, f"{p['authors']}\n{p['summary']}\n{p['link']}\n")
pdf.ln(2)
return pdf.output(dest="S").encode("latin-1")
# ---------------------------------------------------------------------
def sidebar_workspace():
with st.sidebar:
st.header("🗂️ Workspace")
ws = get_workspace()
if not ws:
st.info("Run a search and click **Save** to build your workspace.")
return
for i, item in enumerate(ws, 1):
with st.expander(f"{i}. {item['query']}"):
st.write("**AI Summary**:", item["result"]["ai_summary"])
df = pd.DataFrame(item["result"]["papers"])
st.download_button("📥 CSV", df.to_csv(index=False),
f"workspace_{i}.csv", "text/csv")
# ---------------------------------------------------------------------
def render_ui():
st.set_page_config(page_title="MedGenesis AI", layout="wide")
# 🔔 quick alert check
saved_q = [q["query"] for q in get_workspace()]
if saved_q:
try:
alerts = asyncio.run(check_alerts(saved_q))
if alerts:
with st.sidebar:
st.subheader("🔔 New Papers")
for q, links in alerts.items():
st.write(f"**{q}** – {len(links)} new")
except Exception as e:
st.sidebar.warning(f"Alert check failed: {e}")
sidebar_workspace()
# Header
col1, col2 = st.columns([0.15, 0.85])
with col1:
if LOGO.exists(): st.image(str(LOGO), width=100)
with col2:
st.markdown("## 🧬 **MedGenesis AI**")
st.caption("PubMed·ArXiv·OpenFDA·UMLS·NCBI·DisGeNET·ClinicalTrials·GPT-4o")
st.markdown("---")
query = st.text_input("🔍 Ask your biomedical question:",
placeholder="e.g. CRISPR for glioblastoma")
# -----------------------------------------------------------------
if st.button("Run Search 🚀") and query:
with st.spinner("Synthesizing multi-source biomedical intel…"):
res = asyncio.run(orchestrate_search(query))
st.success("Ready!")
tabs = st.tabs([
"Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"
])
# ----------- RESULTS -----------------
with tabs[0]:
st.header("📚 Literature")
for i, p in enumerate(res["papers"], 1):
st.markdown(f"**{i}. [{p['title']}]({p['link']})**  *{p['authors']}*")
st.markdown(f"<span style='color:gray'>{p['summary']}</span>",
unsafe_allow_html=True)
colA, colB = st.columns(2)
with colA:
if st.button("💾 Save to Workspace"):
save_query(query, res); st.success("Saved!")
with colB:
st.download_button("📥 CSV", pd.DataFrame(res["papers"]).to_csv(index=False),
"papers.csv", "text/csv")
st.download_button("📄 PDF", pdf_from_papers(res["papers"]),
"papers.pdf", "application/pdf")
st.subheader("🧠 UMLS")
for c in res["umls"]:
if c.get("cui"): st.write(f"- **{c['name']}** ({c['cui']})")
st.subheader("💊 OpenFDA Safety")
for d in res["drug_safety"]: st.json(d)
st.subheader("🤖 AI Summary")
st.info(res["ai_summary"])
# ----------- GENES & VARIANTS --------
with tabs[1]:
st.header("🧬 Gene Signals")
for g in res["genes"]:
st.write(f"- **{g.get('name', g.get('geneid'))}** – {g.get('description','')}")
if res["gene_disease"]:
st.markdown("### DisGeNET Links"); st.json(res["gene_disease"][:15])
if res["mesh_defs"]:
st.markdown("### MeSH Definitions")
for d in res["mesh_defs"]: st.write("-", d)
# ----------- TRIALS ------------------
with tabs[2]:
st.header("💊 Clinical Trials")
if not res["clinical_trials"]:
st.info("No trials retrieved (rate-limited or none found).")
for t in res["clinical_trials"]:
st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
st.write(f"Phase: {t.get('Phase',[''])[0]} | Status: {t['OverallStatus'][0]}")
# ----------- GRAPH -------------------
with tabs[3]:
st.header("🗺️ Knowledge Graph")
nodes, edges, cfg = build_agraph(res["papers"],
res["umls"],
res["drug_safety"])
hl = st.text_input("Highlight node:", key="hl")
if hl:
pat = re.compile(re.escape(hl), re.I)
for n in nodes:
if pat.search(n.label): n.color, n.size = "#f1c40f", 30
else: n.color = "#d3d3d3"
agraph(nodes=nodes, edges=edges, config=cfg)
# ----------- METRICS -----------------
with tabs[4]:
st.header("📈 Graph Metrics")
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
st.metric("Density", f"{get_density(G):.3f}")
st.markdown("#### Hub Nodes")
for nid, sc in get_top_hubs(G):
lab = next((n.label for n in nodes if n.id == nid), nid)
st.write(f"- **{lab}** – {sc:.3f}")
# ----------- VISUALS -----------------
with tabs[5]:
years = [p["published"] for p in res["papers"] if p.get("published")]
if years: st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
# -------- Follow-up AI ---------------
st.markdown("---")
follow = st.text_input("Ask follow-up question:")
if st.button("Ask AI"):
st.write(asyncio.run(answer_ai_question(follow, context=query))["answer"])
else:
st.info("Enter a question and press **Run Search 🚀**")
# ---------------------------------------------------------------------
if __name__ == "__main__":
render_ui()