mgbam commited on
Commit
9965499
·
verified ·
1 Parent(s): 7a35270

Update mcp/orchestrator.py

Browse files
Files changed (1) hide show
  1. mcp/orchestrator.py +76 -23
mcp/orchestrator.py CHANGED
@@ -1,37 +1,90 @@
1
  # mcp/orchestrator.py
 
 
 
2
 
3
- from mcp.arxiv import fetch_arxiv
4
- from mcp.pubmed import fetch_pubmed
5
- from mcp.nlp import extract_keywords
6
- from mcp.umls import lookup_umls
7
- from mcp.openfda import fetch_drug_safety
 
 
 
 
 
 
8
  from mcp.openai_utils import ai_summarize, ai_qa
9
 
10
- import asyncio
 
 
 
 
 
 
 
 
11
 
12
- async def orchestrate_search(query: str):
13
- # Fetch from arXiv and PubMed in parallel
14
- arxiv_task = asyncio.create_task(fetch_arxiv(query))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  pubmed_task = asyncio.create_task(fetch_pubmed(query))
16
  arxiv_results, pubmed_results = await asyncio.gather(arxiv_task, pubmed_task)
17
- all_papers = arxiv_results + pubmed_results
18
- paper_text = " ".join([p['summary'] for p in all_papers])
19
- keywords = extract_keywords(paper_text)[:8] # Limit for speed
20
- # UMLS and OpenFDA in parallel
21
- umls_tasks = [lookup_umls(k) for k in keywords]
22
- drug_tasks = [fetch_drug_safety(k) for k in keywords]
23
- umls_results = await asyncio.gather(*umls_tasks)
24
- drug_data = await asyncio.gather(*drug_tasks)
 
 
 
 
 
 
 
 
 
 
 
 
25
  summary = await ai_summarize(paper_text)
26
- links = [p['link'] for p in all_papers[:3]]
 
27
  return {
28
- "papers": all_papers,
29
- "umls": umls_results,
30
- "drug_safety": drug_data,
31
- "ai_summary": summary,
32
  "suggested_reading": links,
 
 
 
 
 
33
  }
34
 
35
- async def answer_ai_question(question: str, context: str = ""):
 
 
36
  answer = await ai_qa(question, context)
37
  return {"answer": answer}
 
1
  # mcp/orchestrator.py
2
+ """
3
+ Orchestrates retrieval, enrichment, and AI synthesis for a user query.
4
+ """
5
 
6
+ import asyncio
7
+ from typing import Dict, Any, List
8
+
9
+ from mcp.arxiv import fetch_arxiv
10
+ from mcp.pubmed import fetch_pubmed
11
+ from mcp.nlp import extract_keywords
12
+ from mcp.umls import lookup_umls
13
+ from mcp.openfda import fetch_drug_safety
14
+ from mcp.ncbi import search_gene, get_mesh_definition
15
+ from mcp.disgenet import disease_to_genes
16
+ from mcp.clinicaltrials import search_trials
17
  from mcp.openai_utils import ai_summarize, ai_qa
18
 
19
+ # ---------------------------------------------------------------------
20
+ async def _gene_and_mesh_enrichment(keywords: List[str]) -> Dict[str, Any]:
21
+ """Run NCBI and DisGeNET on keywords in parallel."""
22
+ tasks = []
23
+ for kw in keywords:
24
+ tasks.append(search_gene(kw))
25
+ tasks.append(get_mesh_definition(kw))
26
+ tasks.append(disease_to_genes(kw))
27
+ results = await asyncio.gather(*tasks, return_exceptions=True)
28
 
29
+ genes, meshes, disgen = [], [], []
30
+ for i, res in enumerate(results):
31
+ if isinstance(res, Exception):
32
+ continue
33
+ # Cycle: 0 gene, 1 mesh, 2 disgenet, repeat …
34
+ mod = i % 3
35
+ if mod == 0:
36
+ genes.extend(res)
37
+ elif mod == 1:
38
+ meshes.append(res)
39
+ else:
40
+ disgen.extend(res)
41
+ return {"genes": genes, "meshes": meshes, "disgenet": disgen}
42
+
43
+ # ---------------------------------------------------------------------
44
+ async def orchestrate_search(query: str) -> Dict[str, Any]:
45
+ """Main entry—returns a rich result dict for app UI."""
46
+ # -------- literature retrieval in parallel --------
47
+ arxiv_task = asyncio.create_task(fetch_arxiv(query))
48
  pubmed_task = asyncio.create_task(fetch_pubmed(query))
49
  arxiv_results, pubmed_results = await asyncio.gather(arxiv_task, pubmed_task)
50
+ papers = arxiv_results + pubmed_results
51
+
52
+ # -------- keyword extraction --------
53
+ paper_text = " ".join(p["summary"] for p in papers)
54
+ keywords = extract_keywords(paper_text)[:8]
55
+
56
+ # -------- enrichment tasks in parallel --------
57
+ umls_tasks = [lookup_umls(k) for k in keywords]
58
+ fda_tasks = [fetch_drug_safety(k) for k in keywords]
59
+ enrich_task = asyncio.create_task(_gene_and_mesh_enrichment(keywords))
60
+ trials_task = asyncio.create_task(search_trials(query, max_studies=10))
61
+
62
+ umls, fda, enrich, trials = await asyncio.gather(
63
+ asyncio.gather(*umls_tasks),
64
+ asyncio.gather(*fda_tasks),
65
+ enrich_task,
66
+ trials_task,
67
+ )
68
+
69
+ # -------- AI summary --------
70
  summary = await ai_summarize(paper_text)
71
+ links = [p["link"] for p in papers[:3]]
72
+
73
  return {
74
+ "papers" : papers,
75
+ "umls" : umls,
76
+ "drug_safety" : fda,
77
+ "ai_summary" : summary,
78
  "suggested_reading": links,
79
+ # new fields
80
+ "genes" : enrich["genes"],
81
+ "mesh_definitions": enrich["meshes"],
82
+ "gene_disease" : enrich["disgenet"],
83
+ "clinical_trials" : trials,
84
  }
85
 
86
+ # ---------------------------------------------------------------------
87
+ async def answer_ai_question(question: str, context: str = "") -> Dict[str, str]:
88
+ """Free-form Q&A using OpenAI."""
89
  answer = await ai_qa(question, context)
90
  return {"answer": answer}