Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,18 @@
|
|
1 |
-
#
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from pathlib import Path
|
5 |
|
6 |
import streamlit as st
|
@@ -9,45 +21,42 @@ import plotly.express as px
|
|
9 |
from fpdf import FPDF
|
10 |
from streamlit_agraph import agraph
|
11 |
|
12 |
-
from mcp.orchestrator
|
13 |
-
from mcp.workspace
|
14 |
from mcp.knowledge_graph import build_agraph
|
15 |
-
from mcp.graph_utils
|
16 |
-
from mcp.alerts
|
17 |
|
18 |
-
#
|
19 |
-
os.environ.
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
})
|
24 |
-
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
25 |
|
26 |
ROOT = Path(__file__).parent
|
27 |
LOGO = ROOT / "assets" / "logo.png"
|
28 |
|
29 |
-
#
|
|
|
30 |
|
31 |
-
def
|
32 |
-
return t.encode("latin-1", "replace").decode("latin-1")
|
33 |
-
|
34 |
-
def _export_pdf(papers):
|
35 |
pdf = FPDF()
|
36 |
pdf.set_auto_page_break(auto=True, margin=15)
|
37 |
pdf.add_page()
|
38 |
pdf.set_font("Helvetica", size=11)
|
39 |
-
pdf.
|
40 |
pdf.ln(3)
|
|
|
41 |
for i, p in enumerate(papers, 1):
|
42 |
pdf.set_font("Helvetica", "B", 11)
|
43 |
-
pdf.multi_cell(0, 7,
|
44 |
pdf.set_font("Helvetica", size=9)
|
45 |
body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
|
46 |
-
pdf.multi_cell(0, 6,
|
47 |
pdf.ln(1)
|
48 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
49 |
|
50 |
-
#
|
51 |
|
52 |
def _workspace_sidebar():
|
53 |
with st.sidebar:
|
@@ -60,107 +69,159 @@ def _workspace_sidebar():
|
|
60 |
with st.expander(f"{i}. {item['query']}"):
|
61 |
st.write(item["result"]["ai_summary"])
|
62 |
|
63 |
-
#
|
64 |
|
65 |
def render_ui():
|
66 |
st.set_page_config("MedGenesis AI", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
_workspace_sidebar()
|
68 |
|
69 |
-
# header ---------------------------------------------------------
|
70 |
c1, c2 = st.columns([0.15, 0.85])
|
71 |
-
|
72 |
-
|
|
|
73 |
with c2:
|
74 |
st.markdown("## 𧬠**MedGenesis AI**")
|
75 |
st.caption("Multiβsource biomedical assistant Β· OpenAI / Gemini")
|
76 |
|
77 |
-
llm
|
78 |
-
query = st.text_input("Enter biomedical question", "CRISPR glioblastoma therapy")
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
if not res:
|
90 |
st.info("Enter a question and press **Run Search π**")
|
91 |
return
|
92 |
|
|
|
93 |
tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])
|
94 |
|
95 |
-
#
|
96 |
with tabs[0]:
|
97 |
for i, p in enumerate(res["papers"], 1):
|
98 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
99 |
st.write(p["summary"])
|
100 |
-
|
101 |
-
with
|
102 |
-
st.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False), "papers.csv")
|
103 |
-
with
|
104 |
-
st.download_button("PDF",
|
105 |
if st.button("πΎ Save"):
|
106 |
-
save_query(
|
107 |
st.success("Saved to workspace")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
st.subheader("AI summary")
|
109 |
st.info(res["ai_summary"])
|
110 |
|
111 |
-
#
|
112 |
with tabs[1]:
|
113 |
-
|
|
|
|
|
114 |
st.info("No gene hits (rateβlimited or none found).")
|
115 |
-
for g in
|
116 |
-
|
117 |
-
|
118 |
-
st.
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
with tabs[2]:
|
124 |
st.header("Clinical trials")
|
125 |
-
|
|
|
126 |
st.info("No trials (rateβlimited or none found).")
|
127 |
-
for t in
|
128 |
st.markdown(f"**{t['nctId']}** β {t['briefTitle']}")
|
129 |
st.write(f"Phase {t.get('phase')} | Status {t.get('status')}")
|
130 |
|
131 |
-
#
|
132 |
with tabs[3]:
|
133 |
nodes, edges, cfg = build_agraph(res["papers"], res["umls"], res["drug_safety"])
|
134 |
-
hl = st.text_input("Highlight node:")
|
135 |
if hl:
|
136 |
pat = re.compile(re.escape(hl), re.I)
|
137 |
for n in nodes:
|
138 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
139 |
agraph(nodes, edges, cfg)
|
140 |
|
141 |
-
#
|
142 |
with tabs[4]:
|
|
|
143 |
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
144 |
st.metric("Density", f"{get_density(G):.3f}")
|
|
|
145 |
for nid, sc in get_top_hubs(G):
|
146 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
147 |
st.write(f"- {lab} {sc:.3f}")
|
148 |
|
149 |
-
#
|
150 |
with tabs[5]:
|
151 |
-
years = [p
|
152 |
if years:
|
153 |
-
|
154 |
-
st.plotly_chart(fig)
|
155 |
|
156 |
-
#
|
157 |
st.markdown("---")
|
158 |
-
|
159 |
if st.button("Ask AI"):
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
-
render_ui()
|
|
|
1 |
+
# app.py β Streamlit frontβend for MedGenesis
|
2 |
+
|
3 |
+
"""CPUβonly demo that can run on HF Spaces.
|
4 |
+
Requirements (environment variables / HF π secrets):
|
5 |
+
|
6 |
+
OPENAI_API_KEY / GEMINI_KEY β LLMs
|
7 |
+
PUB_KEY / UMLS_KEY / DISGENET_KEY ... β data APIs (optional)
|
8 |
+
MYGENE_KEY / OT_KEY / CBIO_KEY β new APIs (optional)
|
9 |
+
|
10 |
+
Run locally:
|
11 |
+
streamlit run app.py --server.headless true --server.address 0.0.0.0
|
12 |
+
"""
|
13 |
+
|
14 |
+
from __future__ import annotations
|
15 |
+
import os, asyncio, re, pathlib
|
16 |
from pathlib import Path
|
17 |
|
18 |
import streamlit as st
|
|
|
21 |
from fpdf import FPDF
|
22 |
from streamlit_agraph import agraph
|
23 |
|
24 |
+
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
25 |
+
from mcp.workspace import get_workspace, save_query
|
26 |
from mcp.knowledge_graph import build_agraph
|
27 |
+
from mcp.graph_utils import build_nx, get_top_hubs, get_density
|
28 |
+
from mcp.alerts import check_alerts
|
29 |
|
30 |
+
# --- Streamlit telemetry dir fix ------------------------------------------
|
31 |
+
os.environ.setdefault("STREAMLIT_DATA_DIR", "/tmp/.streamlit")
|
32 |
+
os.environ.setdefault("XDG_STATE_HOME", "/tmp")
|
33 |
+
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
34 |
+
pathlib.Path(os.environ["STREAMLIT_DATA_DIR"]).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
35 |
|
36 |
ROOT = Path(__file__).parent
|
37 |
LOGO = ROOT / "assets" / "logo.png"
|
38 |
|
39 |
+
# --- helpers --------------------------------------------------------------
|
40 |
+
LATIN1 = str.maketrans({**{chr(i): "?" for i in range(256, 0x110000)}})
|
41 |
|
42 |
+
def _pdf(papers: list[dict]) -> bytes:
|
|
|
|
|
|
|
43 |
pdf = FPDF()
|
44 |
pdf.set_auto_page_break(auto=True, margin=15)
|
45 |
pdf.add_page()
|
46 |
pdf.set_font("Helvetica", size=11)
|
47 |
+
pdf.multi_cell(0, 8, "MedGenesis AI β Results", align="C")
|
48 |
pdf.ln(3)
|
49 |
+
|
50 |
for i, p in enumerate(papers, 1):
|
51 |
pdf.set_font("Helvetica", "B", 11)
|
52 |
+
pdf.multi_cell(0, 7, f"{i}. {p['title']}".translate(LATIN1))
|
53 |
pdf.set_font("Helvetica", size=9)
|
54 |
body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
|
55 |
+
pdf.multi_cell(0, 6, body.translate(LATIN1))
|
56 |
pdf.ln(1)
|
57 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
58 |
|
59 |
+
# --- sidebar --------------------------------------------------------------
|
60 |
|
61 |
def _workspace_sidebar():
|
62 |
with st.sidebar:
|
|
|
69 |
with st.expander(f"{i}. {item['query']}"):
|
70 |
st.write(item["result"]["ai_summary"])
|
71 |
|
72 |
+
# --- UI -------------------------------------------------------------------
|
73 |
|
74 |
def render_ui():
|
75 |
st.set_page_config("MedGenesis AI", layout="wide")
|
76 |
+
|
77 |
+
# SessionΒ state --------------------------------------------------------
|
78 |
+
for k, v in {"query_result": None, "followup_input": "", "followup_response": None,
|
79 |
+
"last_query": "", "last_llm": "openai", "tab": 0}.items():
|
80 |
+
st.session_state.setdefault(k, v)
|
81 |
+
|
82 |
_workspace_sidebar()
|
83 |
|
|
|
84 |
c1, c2 = st.columns([0.15, 0.85])
|
85 |
+
with c1:
|
86 |
+
if LOGO.exists():
|
87 |
+
st.image(str(LOGO), width=105)
|
88 |
with c2:
|
89 |
st.markdown("## 𧬠**MedGenesis AI**")
|
90 |
st.caption("Multiβsource biomedical assistant Β· OpenAI / Gemini")
|
91 |
|
92 |
+
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True, index=(0 if st.session_state.last_llm=="openai" else 1))
|
93 |
+
query = st.text_input("Enter biomedical question", st.session_state.last_query or "e.g. CRISPR glioblastoma therapy")
|
94 |
+
|
95 |
+
# alerts ---------------------------------------------------------------
|
96 |
+
if work := get_workspace():
|
97 |
+
try:
|
98 |
+
news = asyncio.run(check_alerts([w["query"] for w in work]))
|
99 |
+
if news:
|
100 |
+
with st.sidebar:
|
101 |
+
st.subheader("π New papers")
|
102 |
+
for q, lnks in news.items():
|
103 |
+
st.write(f"**{q}** β {len(lnks)} new")
|
104 |
+
except Exception:
|
105 |
+
pass
|
106 |
+
|
107 |
+
# run search -----------------------------------------------------------
|
108 |
+
if st.button("Run Search π"):
|
109 |
+
if not query.strip():
|
110 |
+
st.warning("Please enter a biomedical question first.")
|
111 |
+
else:
|
112 |
+
with st.spinner("Collecting literature & biomedical data β¦"):
|
113 |
+
res = asyncio.run(orchestrate_search(query, llm=llm))
|
114 |
+
st.session_state.update({
|
115 |
+
"query_result": res,
|
116 |
+
"last_query": query,
|
117 |
+
"last_llm": llm,
|
118 |
+
"followup_input": "",
|
119 |
+
"followup_response": None,
|
120 |
+
})
|
121 |
+
st.success(f"Completed with **{res['llm_used'].title()}**")
|
122 |
+
|
123 |
+
res = st.session_state.query_result
|
124 |
if not res:
|
125 |
st.info("Enter a question and press **Run Search π**")
|
126 |
return
|
127 |
|
128 |
+
# --- tabs -------------------------------------------------------------
|
129 |
tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])
|
130 |
|
131 |
+
# Results --------------------------------------------------------------
|
132 |
with tabs[0]:
|
133 |
for i, p in enumerate(res["papers"], 1):
|
134 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
135 |
st.write(p["summary"])
|
136 |
+
col1, col2 = st.columns(2)
|
137 |
+
with col1:
|
138 |
+
st.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False), "papers.csv", "text/csv")
|
139 |
+
with col2:
|
140 |
+
st.download_button("PDF", _pdf(res["papers"]), "papers.pdf", "application/pdf")
|
141 |
if st.button("πΎ Save"):
|
142 |
+
save_query(st.session_state.last_query, res)
|
143 |
st.success("Saved to workspace")
|
144 |
+
|
145 |
+
st.subheader("UMLS concepts")
|
146 |
+
for c in res["umls"]:
|
147 |
+
if isinstance(c, dict) and c.get("cui"):
|
148 |
+
st.write(f"- **{c['name']}** ({c['cui']})")
|
149 |
+
|
150 |
+
st.subheader("OpenFDA safety")
|
151 |
+
for d in res["drug_safety"]:
|
152 |
+
st.json(d)
|
153 |
+
|
154 |
st.subheader("AI summary")
|
155 |
st.info(res["ai_summary"])
|
156 |
|
157 |
+
# Genes ----------------------------------------------------------------
|
158 |
with tabs[1]:
|
159 |
+
st.header("Gene / Variant signals")
|
160 |
+
genes = res.get("genes") or []
|
161 |
+
if not genes:
|
162 |
st.info("No gene hits (rateβlimited or none found).")
|
163 |
+
for g in genes:
|
164 |
+
sym = g.get("symbol") or g.get("approvedSymbol") or g.get("name", "")
|
165 |
+
summ = g.get("summary") or g.get("description", "")
|
166 |
+
st.write(f"- **{sym}** {summ}")
|
167 |
+
if res["gene_disease"]:
|
168 |
+
st.markdown("### DisGeNET links")
|
169 |
+
st.json(res["gene_disease"][:15])
|
170 |
+
if res["mesh_defs"]:
|
171 |
+
st.markdown("### MeSH definitions")
|
172 |
+
for d in res["mesh_defs"]:
|
173 |
+
if d:
|
174 |
+
st.write("-", d)
|
175 |
+
|
176 |
+
# Trials ---------------------------------------------------------------
|
177 |
with tabs[2]:
|
178 |
st.header("Clinical trials")
|
179 |
+
trials = res.get("clinical_trials") or []
|
180 |
+
if not trials:
|
181 |
st.info("No trials (rateβlimited or none found).")
|
182 |
+
for t in trials:
|
183 |
st.markdown(f"**{t['nctId']}** β {t['briefTitle']}")
|
184 |
st.write(f"Phase {t.get('phase')} | Status {t.get('status')}")
|
185 |
|
186 |
+
# Graph ---------------------------------------------------------------
|
187 |
with tabs[3]:
|
188 |
nodes, edges, cfg = build_agraph(res["papers"], res["umls"], res["drug_safety"])
|
189 |
+
hl = st.text_input("Highlight node:", key="hl")
|
190 |
if hl:
|
191 |
pat = re.compile(re.escape(hl), re.I)
|
192 |
for n in nodes:
|
193 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
194 |
agraph(nodes, edges, cfg)
|
195 |
|
196 |
+
# Metrics -------------------------------------------------------------
|
197 |
with tabs[4]:
|
198 |
+
nodes, edges, _ = build_agraph(res["papers"], res["umls"], res["drug_safety"])
|
199 |
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
200 |
st.metric("Density", f"{get_density(G):.3f}")
|
201 |
+
st.markdown("**Top hubs**")
|
202 |
for nid, sc in get_top_hubs(G):
|
203 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
204 |
st.write(f"- {lab} {sc:.3f}")
|
205 |
|
206 |
+
# Visuals -------------------------------------------------------------
|
207 |
with tabs[5]:
|
208 |
+
years = [int(p["published"][:4]) for p in res["papers"] if p.get("published", "").isdigit()]
|
209 |
if years:
|
210 |
+
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
|
|
211 |
|
212 |
+
# Followβup QA --------------------------------------------------------
|
213 |
st.markdown("---")
|
214 |
+
st.text_input("Ask followβup question:", key="followup_input", placeholder="e.g. Any phase III trials recruiting now?")
|
215 |
if st.button("Ask AI"):
|
216 |
+
q = st.session_state.followup_input.strip()
|
217 |
+
if not q:
|
218 |
+
st.warning("Please type a question first.")
|
219 |
+
else:
|
220 |
+
with st.spinner("Querying LLM β¦"):
|
221 |
+
ans = asyncio.run(answer_ai_question(q, context=st.session_state.last_query, llm=st.session_state.last_llm))
|
222 |
+
st.session_state.followup_response = ans["answer"]
|
223 |
+
if st.session_state.followup_response:
|
224 |
+
st.write(st.session_state.followup_response)
|
225 |
|
226 |
if __name__ == "__main__":
|
227 |
+
render_ui()
|