MedQA / tools /quantum_treatment_optimizer_tool.py
mgbam's picture
Update tools/quantum_treatment_optimizer_tool.py
774d11e verified
# /home/user/app/tools/quantum_treatment_optimizer_tool.py
from langchain_core.tools import BaseTool
from typing import Type, List, Dict, Any, Optional
from pydantic import BaseModel, Field
from services.logger import app_logger
from services.metrics import log_tool_usage
try:
from quantum.optimizer import optimize_treatment
except ImportError:
app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.")
def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]:
import random, time # For mock
time.sleep(random.uniform(0.5,1.0))
mock_actions = [f"Mock action for {conditions[0] if conditions else 'general health'} considering {patient_data.get('age', 'N/A')} years old."]
if current_treatments: mock_actions.append(f"Review interaction with {current_treatments[0]}.")
return {
"simulated_optimization_id": f"QO-MOCK-{random.randint(1000,9999)}",
"suggested_actions": mock_actions,
"primary_focus_condition": conditions[0] if conditions else "Overall Assessment",
"confidence_level_simulated": random.uniform(0.7, 0.9),
"summary_notes": "This is a simulated optimization result. Always consult with medical professionals for actual treatment decisions.",
}
class QuantumOptimizerInput(BaseModel):
patient_data: Dict[str, Any] = Field(
description=(
"A dictionary of relevant patient characteristics. "
"Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, "
"'allergies': ['penicillin']}. This should be populated from the overall patient context."
)
)
current_treatments: List[str] = Field(
description="A list of current medications or therapies (e.g., ['Aspirin 81mg', 'Metformin 500mg OD'])."
)
conditions: List[str] = Field(
description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension'])."
)
class QuantumTreatmentOptimizerTool(BaseTool):
name: str = "quantum_treatment_optimizer"
description: str = (
"A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans "
"based on provided patient data, current treatments, and diagnosed conditions. "
"Use this when seeking novel therapeutic strategies, or to optimize complex polypharmacy. "
"You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'."
)
args_schema: Type[BaseModel] = QuantumOptimizerInput
def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str:
if not optimization_output or not isinstance(optimization_output, dict):
return "The optimizer did not return a structured result or the result was empty."
summary_lines = ["Quantum Treatment Optimizer Suggestions (Simulated):"]
actions = optimization_output.get("suggested_actions", [])
if actions:
summary_lines.append(" Key Suggested Actions/Considerations:")
for action_str in actions: summary_lines.append(f" - {action_str}")
focus = optimization_output.get("primary_focus_condition")
if focus: summary_lines.append(f" Primary Focus: Addressing {focus}.")
confidence = optimization_output.get("confidence_level_simulated")
if confidence is not None: summary_lines.append(f" Simulated Confidence Level: {confidence:.0%}")
notes = optimization_output.get("summary_notes")
if notes: summary_lines.append(f" Summary Notes: {notes}")
sim_id = optimization_output.get("simulated_optimization_id")
if sim_id: summary_lines.append(f" (Simulated Optimization ID: {sim_id})")
if len(summary_lines) == 1:
return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)[:300]}"
return "\n".join(summary_lines)
def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
app_logger.info(
f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, "
f"Treatments: {current_treatments}, Conditions: {conditions}"
)
log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)})
if not patient_data or not conditions:
missing = [item for item, val in [("'patient_data'", patient_data), ("'conditions'", conditions)] if not val]
return f"Error: Insufficient information. Missing: {', '.join(missing)}. Provide comprehensive details."
try:
optimization_output: Dict[str, Any] = optimize_treatment(
patient_data=patient_data, current_treatments=current_treatments, conditions=conditions
)
app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...")
return self._format_results_for_llm(optimization_output)
except ImportError as ie:
app_logger.error(f"ImportError for quantum.optimizer: {ie}", exc_info=True)
return "Error: The core optimization module is currently unavailable."
except Exception as e:
app_logger.error(f"Unexpected error during quantum optimization: {e}", exc_info=True)
return f"Error in optimization process: {str(e)}. Ensure input data is correct."
async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
return self._run(patient_data, current_treatments, conditions, **kwargs)