Medresearch / components /federated_learning.py
mgbam's picture
Add untracked files and synchronize with remote
9c7387c
raw
history blame
1.51 kB
import flwr as fl
import torch
from collections import OrderedDict # For the example provided.
def run_federated_learning():
"""
Sets up and starts a federated learning simulation.
This is a highly conceptual example. Actual implementation requires:
1. A defined model architecture.
2. A training loop using PyTorch or TensorFlow.
3. Data loaders.
4. Proper handling of FL strategies.
"""
class FlowerClient(fl.client.NumPyClient):
def __init__(self, model, trainloader, valloader):
self.model = model
self.trainloader = trainloader
self.valloader = valloader
def get_parameters(self, config):
return [val.cpu().numpy() for _, val in self.model.state_dict().items()]
def set_parameters(self, parameters):
params_dict = zip(self.model.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
self.model.load_state_dict(state_dict, strict=True)
def fit(self, parameters, config):
self.set_parameters(parameters)
# Train.
print("Train the parameters here.")
return parameters, 1, {}
def evaluate(self, parameters, config):
self.set_parameters(parameters)
# Test (validate).
return 1,1, {"accuracy": 1}
#Flower code
#The parameters needs to be added.
print("Started Simulation FL code")