Spaces:
Sleeping
Sleeping
# ------------------------------ | |
# UniversalResearch AI System + LADDER (Tufa Labs) | |
# ------------------------------ | |
import logging | |
import os | |
import re | |
import hashlib | |
import json | |
import time | |
import sys | |
from datetime import datetime | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from typing import List, Dict, Any, Optional, Sequence | |
import chromadb | |
import requests | |
import streamlit as st | |
# LangChain and LangGraph imports | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langgraph.graph import END, StateGraph | |
from langgraph.prebuilt import ToolNode | |
from langgraph.graph.message import add_messages | |
from typing_extensions import TypedDict, Annotated | |
from langchain.tools.retriever import create_retriever_tool | |
# Increase Python's recursion limit if needed | |
sys.setrecursionlimit(10000) | |
# ------------------------------ | |
# Logging Configuration | |
# ------------------------------ | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s [%(levelname)s] %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
# ------------------------------ | |
# State Schema Definition | |
# ------------------------------ | |
class AgentState(TypedDict): | |
""" | |
Stores the messages and context for each step in the workflow. | |
'messages' contain the conversation so far, | |
'context' can hold domain-specific data, 'metadata' for additional info. | |
""" | |
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages] | |
context: Dict[str, Any] | |
metadata: Dict[str, Any] | |
# ------------------------------ | |
# Configuration | |
# ------------------------------ | |
class ResearchConfig: | |
""" | |
Universal configuration for the research system, referencing Tufa Labs' LADDER approach. | |
Make sure to set DEEPSEEK_API_KEY in your environment or HF Space secrets | |
to enable the external LLM calls. | |
""" | |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY") | |
CHROMA_PATH = "chroma_db" | |
CHUNK_SIZE = 512 | |
CHUNK_OVERLAP = 64 | |
MAX_CONCURRENT_REQUESTS = 5 | |
EMBEDDING_DIMENSIONS = 1536 | |
# Example map for featured research docs | |
DOCUMENT_MAP = { | |
"Sample Research Document 1": "Topic A Overview", | |
"Sample Research Document 2": "Topic B Analysis", | |
"Sample Research Document 3": "Topic C Innovations" | |
} | |
# Template referencing a general approach for analyzing research documents | |
ANALYSIS_TEMPLATE = ( | |
"Analyze the following research documents with scientific rigor:\n{context}\n\n" | |
"Using the LADDER approach from Tufa Labs, the model should:\n" | |
"1. Break down the problem into simpler subproblems.\n" | |
"2. Iteratively refine the solution.\n" | |
"3. Provide thorough analysis, including:\n" | |
" a. Key Contributions\n" | |
" b. Novel Methodologies\n" | |
" c. Empirical Results (with metrics)\n" | |
" d. Potential Applications\n" | |
" e. Limitations & Future Directions\n\n" | |
"Format your response in Markdown with LaTeX mathematical notation where applicable." | |
) | |
# Early check for missing API key | |
if not ResearchConfig.DEEPSEEK_API_KEY: | |
st.error( | |
"""**Research Portal Configuration Required** | |
1. Obtain your DeepSeek API key from [platform.deepseek.com](https://platform.deepseek.com/) | |
2. Set the secret: `DEEPSEEK_API_KEY` in your Space settings | |
3. Rebuild your deployment.""" | |
) | |
st.stop() | |
# ------------------------------ | |
# Universal Document Processing | |
# ------------------------------ | |
class UniversalDocumentManager: | |
""" | |
Manages creation of document collections for any research domain. | |
Uses OpenAI embeddings for vector-based semantic search. | |
""" | |
def __init__(self) -> None: | |
try: | |
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH) | |
logger.info("Initialized PersistentClient for Chroma.") | |
except Exception as e: | |
logger.error(f"Error initializing PersistentClient: {e}") | |
self.client = chromadb.Client() # Fallback to in-memory client | |
self.embeddings = OpenAIEmbeddings( | |
model="text-embedding-3-large", | |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS | |
) | |
def create_collection(self, documents: List[str], collection_name: str) -> Chroma: | |
""" | |
Splits documents into manageable chunks and stores them in a Chroma collection. | |
""" | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=ResearchConfig.CHUNK_SIZE, | |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP, | |
separators=["\n\n", "\n", "|||"] | |
) | |
try: | |
docs = splitter.create_documents(documents) | |
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.") | |
except Exception as e: | |
logger.error(f"Error splitting documents: {e}") | |
raise e | |
return Chroma.from_documents( | |
documents=docs, | |
embedding=self.embeddings, | |
client=self.client, | |
collection_name=collection_name, | |
ids=[self._document_id(doc.page_content) for doc in docs] | |
) | |
def _document_id(self, content: str) -> str: | |
""" | |
Generates a unique document ID using SHA256 + timestamp. | |
""" | |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}" | |
# Create example collections (can be replaced with domain-specific docs) | |
udm = UniversalDocumentManager() | |
research_docs = udm.create_collection([ | |
"Research Report: Novel AI Techniques in Renewable Energy", | |
"Academic Paper: Advances in Quantum Computing for Data Analysis", | |
"Survey: Emerging Trends in Biomedical Research" | |
], "research") | |
development_docs = udm.create_collection([ | |
"Project Update: New Algorithms in Software Engineering", | |
"Development Report: Innovations in User Interface Design", | |
"Case Study: Agile Methodologies in Large-Scale Software Projects" | |
], "development") | |
# ------------------------------ | |
# Advanced Retrieval System | |
# ------------------------------ | |
class ResearchRetriever: | |
""" | |
Provides retrieval methods for multiple domains (research, development, etc.). | |
Uses MMR (Maximal Marginal Relevance) or similarity-based retrieval from Chroma. | |
""" | |
def __init__(self) -> None: | |
try: | |
self.research_retriever = research_docs.as_retriever( | |
search_type="mmr", | |
search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85} | |
) | |
self.development_retriever = development_docs.as_retriever( | |
search_type="similarity", | |
search_kwargs={'k': 3} | |
) | |
logger.info("Initialized retrievers for research and development domains.") | |
except Exception as e: | |
logger.error(f"Error initializing retrievers: {e}") | |
raise e | |
def retrieve(self, query: str, domain: str) -> List[Any]: | |
""" | |
Retrieves documents for a given query and domain. | |
Defaults to 'research' if domain is unrecognized. | |
""" | |
try: | |
if domain == "research": | |
return self.research_retriever.invoke(query) | |
elif domain == "development": | |
return self.development_retriever.invoke(query) | |
else: | |
logger.warning(f"Domain '{domain}' not recognized. Defaulting to research.") | |
return self.research_retriever.invoke(query) | |
except Exception as e: | |
logger.error(f"Retrieval error for domain '{domain}': {e}") | |
return [] | |
retriever = ResearchRetriever() | |
# ------------------------------ | |
# Cognitive Processing Unit | |
# ------------------------------ | |
class CognitiveProcessor: | |
""" | |
Sends parallel requests to the DeepSeek API to reduce failures. | |
Implements a consensus mechanism to pick the most comprehensive response. | |
""" | |
def __init__(self) -> None: | |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS) | |
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12] | |
def process_query(self, prompt: str) -> Dict: | |
""" | |
Processes a query by sending multiple parallel requests (triple redundancy). | |
""" | |
futures = [] | |
for _ in range(3): | |
futures.append(self.executor.submit(self._execute_api_request, prompt)) | |
results = [] | |
for future in as_completed(futures): | |
try: | |
results.append(future.result()) | |
except Exception as e: | |
logger.error(f"Error in API request: {e}") | |
st.error(f"Processing Error: {str(e)}") | |
return self._consensus_check(results) | |
def _execute_api_request(self, prompt: str) -> Dict: | |
""" | |
Executes a single request to the DeepSeek endpoint. | |
""" | |
headers = { | |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}", | |
"Content-Type": "application/json", | |
"X-Research-Session": self.session_id | |
} | |
payload = { | |
"model": "deepseek-chat", | |
"messages": [{ | |
"role": "user", | |
"content": f"Respond as a Senior Researcher:\n{prompt}" | |
}], | |
"temperature": 0.7, | |
"max_tokens": 1500, | |
"top_p": 0.9 | |
} | |
try: | |
response = requests.post( | |
"https://api.deepseek.com/v1/chat/completions", | |
headers=headers, | |
json=payload, | |
timeout=45 | |
) | |
response.raise_for_status() | |
logger.info("DeepSeek API request successful.") | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
logger.error(f"DeepSeek API request failed: {e}") | |
return {"error": str(e)} | |
def _consensus_check(self, results: List[Dict]) -> Dict: | |
""" | |
Chooses the best response by comparing the length of the message content. | |
""" | |
valid_results = [r for r in results if "error" not in r] | |
if not valid_results: | |
logger.error("All API requests failed.") | |
return {"error": "All API requests failed"} | |
return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', ''))) | |
# ------------------------------ | |
# Research Workflow Engine (LADDER Integration) | |
# ------------------------------ | |
class ResearchWorkflow: | |
""" | |
Defines a multi-step workflow using LangGraph with Tufa Labs' LADDER approach: | |
1. Ingest Query | |
2. Retrieve Documents | |
3. Analyze Content | |
4. Validate Output | |
5. Refine (Recursive Self-Learning + TTRL) | |
The 'refine_results' node applies LADDERβs idea of iteratively | |
breaking down problems and re-solving them with no external data. | |
""" | |
def __init__(self) -> None: | |
self.processor = CognitiveProcessor() | |
self.workflow = StateGraph(AgentState) | |
self._build_workflow() | |
self.app = self.workflow.compile() | |
def _build_workflow(self) -> None: | |
# Define workflow nodes | |
self.workflow.add_node("ingest", self.ingest_query) | |
self.workflow.add_node("retrieve", self.retrieve_documents) | |
self.workflow.add_node("analyze", self.analyze_content) | |
self.workflow.add_node("validate", self.validate_output) | |
self.workflow.add_node("refine", self.refine_results) | |
# Entry point and transitions | |
self.workflow.set_entry_point("ingest") | |
self.workflow.add_edge("ingest", "retrieve") | |
self.workflow.add_edge("retrieve", "analyze") | |
self.workflow.add_conditional_edges( | |
"analyze", | |
self._quality_check, | |
{"valid": "validate", "invalid": "refine"} | |
) | |
self.workflow.add_edge("validate", END) | |
self.workflow.add_edge("refine", "retrieve") | |
def ingest_query(self, state: AgentState) -> Dict: | |
""" | |
Ingests the research query and initializes the LADDER-based refinement counter. | |
""" | |
try: | |
query = state["messages"][-1].content | |
new_context = {"raw_query": query, "refine_count": 0} | |
logger.info("Query ingested.") | |
return { | |
"messages": [AIMessage(content="Query ingested successfully")], | |
"context": new_context, | |
"metadata": {"timestamp": datetime.now().isoformat()} | |
} | |
except Exception as e: | |
return self._error_state(f"Ingestion Error: {str(e)}") | |
def retrieve_documents(self, state: AgentState) -> Dict: | |
""" | |
Retrieves relevant documents based on the query. | |
The system can handle any domain (math, code generation, theorem proving, etc.). | |
""" | |
try: | |
query = state["context"]["raw_query"] | |
docs = retriever.retrieve(query, "research") | |
logger.info(f"Retrieved {len(docs)} documents for query.") | |
return { | |
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")], | |
"context": { | |
"documents": docs, | |
"retrieval_time": time.time(), | |
"refine_count": state["context"].get("refine_count", 0) | |
} | |
} | |
except Exception as e: | |
return self._error_state(f"Retrieval Error: {str(e)}") | |
def analyze_content(self, state: AgentState) -> Dict: | |
""" | |
Analyzes the retrieved documents using Tufa Labs' LADDER principles: | |
- Break down the documents, | |
- Provide structured analysis, | |
- Return a refined solution. | |
""" | |
try: | |
docs = state["context"].get("documents", []) | |
docs_text = "\n\n".join([d.page_content for d in docs]) | |
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text) | |
response = self.processor.process_query(prompt) | |
if "error" in response: | |
return self._error_state(response["error"]) | |
logger.info("Content analysis completed.") | |
return { | |
"messages": [ | |
AIMessage( | |
content=response.get('choices', [{}])[0].get('message', {}).get('content', '') | |
) | |
], | |
"context": { | |
"analysis": response, | |
"refine_count": state["context"].get("refine_count", 0) | |
} | |
} | |
except Exception as e: | |
return self._error_state(f"Analysis Error: {str(e)}") | |
def validate_output(self, state: AgentState) -> Dict: | |
""" | |
Validates the analysis. If invalid, the system can refine the solution | |
(potentially multiple times) using LADDERβs iterative approach. | |
""" | |
analysis = state["messages"][-1].content | |
validation_prompt = ( | |
f"Validate this analysis:\n{analysis}\n\n" | |
"Check for:\n1. Technical accuracy\n2. Citation support\n3. Logical consistency\n4. Methodological soundness\n\n" | |
"Respond with 'VALID' or 'INVALID'." | |
) | |
response = self.processor.process_query(validation_prompt) | |
logger.info("Output validation completed.") | |
return { | |
"messages": [ | |
AIMessage( | |
content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}" | |
) | |
] | |
} | |
def refine_results(self, state: AgentState) -> Dict: | |
""" | |
Applies Tufa Labs' LADDER principle: | |
- Recursively break down the problem, | |
- Re-solve with no external data, | |
- Potentially leverage TTRL for dynamic updates. | |
This method increments a refinement counter to avoid infinite recursion. | |
""" | |
current_count = state["context"].get("refine_count", 0) | |
state["context"]["refine_count"] = current_count + 1 | |
logger.info(f"LADDER refinement iteration: {state['context']['refine_count']}") | |
refinement_prompt = ( | |
f"Refine this analysis using LADDER's self-improvement approach:\n" | |
f"{state['messages'][-1].content}\n\n" | |
"Focus on breaking down complex points further and re-solving them.\n" | |
"Enhance technical precision, empirical grounding, and theoretical coherence." | |
) | |
response = self.processor.process_query(refinement_prompt) | |
logger.info("Refinement completed.") | |
return { | |
"messages": [ | |
AIMessage( | |
content=response.get('choices', [{}])[0].get('message', {}).get('content', '') | |
) | |
], | |
"context": state["context"] | |
} | |
def _quality_check(self, state: AgentState) -> str: | |
""" | |
Determines if the analysis is 'valid' or 'invalid'. | |
If refine_count exceeds 3, forcibly accept the result to prevent infinite loops. | |
""" | |
refine_count = state["context"].get("refine_count", 0) | |
if refine_count >= 3: | |
logger.warning("Refinement limit reached. Forcing valid outcome to prevent infinite recursion.") | |
return "valid" | |
content = state["messages"][-1].content | |
return "valid" if "VALID" in content else "invalid" | |
def _error_state(self, message: str) -> Dict: | |
""" | |
Returns an error state if any node fails. | |
""" | |
logger.error(message) | |
return { | |
"messages": [AIMessage(content=f"β {message}")], | |
"context": {"error": True}, | |
"metadata": {"status": "error"} | |
} | |
# ------------------------------ | |
# Research Interface (Streamlit UI) | |
# ------------------------------ | |
class ResearchInterface: | |
""" | |
Provides a Streamlit-based interface for the UniversalResearch AI with LADDER. | |
The system is domain-agnostic, handling math, code generation, theorem proving, etc. | |
""" | |
def __init__(self) -> None: | |
self.workflow = ResearchWorkflow() | |
self._initialize_interface() | |
def _initialize_interface(self) -> None: | |
st.set_page_config( | |
page_title="UniversalResearch AI (LADDER)", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
self._inject_styles() | |
self._build_sidebar() | |
self._build_main_interface() | |
def _inject_styles(self) -> None: | |
st.markdown( | |
""" | |
<style> | |
:root { | |
--primary: #2ecc71; | |
--secondary: #3498db; | |
--background: #0a0a0a; | |
--text: #ecf0f1; | |
} | |
.stApp { | |
background: var(--background); | |
color: var(--text); | |
font-family: 'Roboto', sans-serif; | |
} | |
.stTextArea textarea { | |
background: #1a1a1a !important; | |
color: var(--text) !important; | |
border: 2px solid var(--secondary); | |
border-radius: 8px; | |
padding: 1rem; | |
} | |
.stButton>button { | |
background: linear-gradient(135deg, var(--primary), var(--secondary)); | |
border: none; | |
border-radius: 8px; | |
padding: 1rem 2rem; | |
transition: all 0.3s; | |
} | |
.stButton>button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3); | |
} | |
.stExpander { | |
background: #1a1a1a; | |
border: 1px solid #2a2a2a; | |
border-radius: 8px; | |
margin: 1rem 0; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
def _build_sidebar(self) -> None: | |
with st.sidebar: | |
st.title("π Research Database (LADDER)") | |
st.subheader("Featured Research Topics") | |
for title, short in ResearchConfig.DOCUMENT_MAP.items(): | |
with st.expander(short): | |
st.markdown(f"```\n{title}\n```") | |
st.subheader("Analysis Metrics") | |
st.metric("Vector Collections", 2) | |
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS) | |
def _build_main_interface(self) -> None: | |
st.title("π§ UniversalResearch AI with Tufa Labsβ LADDER") | |
st.write( | |
"Leverage the power of Tufa Labs' LADDER approach for recursive self-improvement. " | |
) | |
query = st.text_area( | |
"Research Query:", | |
height=200, | |
placeholder="Enter a research question, from math to code generation..." | |
) | |
if st.button("Execute Analysis", type="primary"): | |
self._execute_analysis(query) | |
def _execute_analysis(self, query: str) -> None: | |
try: | |
with st.spinner("Initializing LADDER-based Analysis..."): | |
# The recursion_limit config ensures we can handle multiple refine iterations | |
results = self.workflow.app.stream({ | |
"messages": [HumanMessage(content=query)], | |
"context": {}, | |
"metadata": {} | |
}, {"recursion_limit": 100}) | |
for event in results: | |
self._render_event(event) | |
st.success("β Analysis Completed Successfully") | |
except Exception as e: | |
logger.error(f"Workflow execution failed: {e}") | |
st.error( | |
f"""**Analysis Failed** | |
{str(e)} | |
Potential issues: | |
- Complex query structure | |
- Document correlation failure | |
- Temporal processing constraints""" | |
) | |
def _render_event(self, event: Dict) -> None: | |
""" | |
Renders each event in the Streamlit UI. | |
""" | |
if 'ingest' in event: | |
with st.container(): | |
st.success("β Query Ingested") | |
elif 'retrieve' in event: | |
with st.container(): | |
docs = event['retrieve']['context'].get('documents', []) | |
st.info(f"π Retrieved {len(docs)} documents") | |
with st.expander("View Retrieved Documents", expanded=False): | |
for idx, doc in enumerate(docs, start=1): | |
st.markdown(f"**Document {idx}**") | |
st.code(doc.page_content, language='text') | |
elif 'analyze' in event: | |
with st.container(): | |
content = event['analyze']['messages'][0].content | |
with st.expander("Research Analysis Report", expanded=True): | |
st.markdown(content) | |
elif 'validate' in event: | |
with st.container(): | |
content = event['validate']['messages'][0].content | |
if "VALID" in content: | |
st.success("β Validation Passed") | |
with st.expander("View Validated Analysis", expanded=True): | |
# Remove "Validation: ..." for a cleaner final result | |
st.markdown(content.split("Validation:")[0]) | |
else: | |
st.warning("β οΈ Validation Issues Detected") | |
with st.expander("View Validation Details", expanded=True): | |
st.markdown(content) | |
if __name__ == "__main__": | |
ResearchInterface() | |